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Abstract

MicroRNAs (miRNAs) are a number of small non-coding RNAs playing a regulatory part in gene expression. Many
virus-encoded miRNAs have been found, which manifests that viruses as well apply the basic pattern of gene
regulation, however, mostly in viruses transcribed from double-stranded DNA genomes. It is still in dispute if RNA
viruses could encode miRNAs because the excision of miRNA might result in the cleavage of viral RNA genome. We
will focus on the miRNAs encoded by RNA virus and discuss their potential role in viral replication cycle and host
cells.

Discovery and biogenesis of microRNAs
MicroRNAs (miRNAs) are a number of small noncoding
RNAs which typically silence the expression of genes via
various mechanisms [1–3]. MiRNAs are key factors in
regulating gene expression of various cellular processes,
so the discovery of miRNAs turns out to be a note-
worthy breakthrough of molecular biology [4–8]. In
1993, there had been researchers observed MiRNA lin-4
in the Caenorhabditis elegans [2, 8]. In subsequent
researches, other similar small regulatory RNAs were
discovered in various organisms. It has been illustrated
that the small RNA originated from a hairpin structure
which are partly complementary to the 3 ‘untranslated
regions (UTR) of other target transcripts [9]. MRNA
destabilization and translational repression can be trig-
gered by this binding, resulting in protein production
decline [10, 11]. MiRNAs are estimated to have an influ-
ence on 60% of mammalian gene expression [12]. Recent
studies indicate that miRNAs produce main effect in
various regulatory pathways, for instance metabolism,
apoptosis, proliferation and differentiation of cells,
embryonic development, cancer, and so on [13, 14].
In mammals, miRNAs are created in a multi-step

process. The biogenesis pathway of miRNA has been
studied in detail. Canonical miRNAs derived from
hairpin-shaped transcripts (pri-miRNAs) which are
usually transcribed by RNA polymerase II (pol II) [15].

Then the precursor miRNAs (pre-miRNAs) are cleaved
out of the larger pri-miRNA by the RNAse III-like endo-
nuclease Drosha[16]. The pri-miRNA is conducted via the
nuclear microprocessor complex, which comprises the
double-stranded RNA (dsRNA)-discerning DiGeorge-syn-
drome critical-region protein 8 (DGCR8) and endonucle-
ase Drosha [17]. Then the hairpin pre-miRNA is carried
out of the nucleus by the nuclear transport receptor,
Exportin-5 and finally to the cytoplasm [18, 19]. Then in
the presence of RNAse III-like endonuclease Dicer, the
pre-miRNAs are cleaved after entering into the cytoplasm
[20]. A short duplex RNA is generated by dicer-mediated
cleavage. Over the RNA-induced silencing complex
(RISC) activation process, one strand of the duplex called
miRNA, remains stably combined into the complex
(RISC*) and undertakes as a sequence-specific probe tar-
geting RISC* to the complementary mRNA [21]. Another
strands, is released, degraded and partly complementary
target sequences [22].

Virus-encoded microRNAs
As intracellular pathogens, viruses are related to a lot of
diseases in plants and animals. Normally viruses use the
biosynthetic molecular mechanism to multiply in host
cell. Not surprisingly, viruses can generate miRNAs in
their own genomes as well, which may generally take ad-
vantage of the host gene expression. Shortly after the
first miRNA was identified, the first virus-encoded
miRNAs was discovered for the human Epstein-Barr
virus (EBV) [23]. Up to now, more than 250 novel viral
miRNAs were discovered, which provides the possibility
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to explore the function and biogenesis of virus-encoded
miRNAs [24]. Although the function of miRNAs in
DNA virus has been described in detail, yet if RNA
viruses could encode miRNAs is less understood. A
possible explanation is that most RNA virus duplicates
in cytoplasm and the viral RNAs could not interact
with the nuclear microprocessor complex mediating
the biosynthesis of miRNA [25, 26]. Another reason is
the processing of miRNAs from the viral genome will
destroy the viral RNA then impact the replication of
virus [25, 27]. Viruses, however, are able to alter cellu-
lar pathways out of their self-interest, several researches
employed ultra-sensitive mechanisms to discover miR-
NAs encoded by RNA virus [28, 29]. We describe the
features of miRNAs encoded by RNA virus as well as
their underlying biological function involved in gene
regulation. An over-view of miRNAs encoded by RNA
viruses is given in Table 1.

MicroRNAs encoded by retroviruses
Retroviruses are a unique class of enveloped small RNA
viruses replicating via reverse transcription and integrat-
ing the dsDNA copy of their own genome into the host’s
genome [27]. As a result, retroviruses are potential RNA
viruses to generate miRNAs, because all the retroviral
transcription originates from host machinery which is
similar with the directing expression of miRNAs in cells.
Researchers have studied whether retroviruses like

human immunodeficiency virus-1 (HIV-1) may encode
miRNAs [30]. It was reported that the (TAR) motif was
the source of some miRNAs encoded by HIV [31, 32].
TAR is a stable hairpin structure resembling miRNA
precursors and it is necessary for the activation of HIV-1
transcription [33]. Several researchers described

TAR-derived miRNAs in latently infected and product-
ively human cells, and via chromatin remodeling, the
TAR-derived miRNAs can start up transcriptional silen-
cing at the long terminal repeats (LTR) promoter, even
downregulate apoptotic genes [34]. In another research
using MT-4 T cells infected HIV-1, a new miRNA desig-
nated miR-N367, was separated within the nef region of
the viral genome, and a role in downregulating both nef
function and HIV-1 transcription by the LTR U3 region
negative-response element [35]. Kaul et al. [36] illus-
trated that HIV1-miR-H1, a miRNA encoded by HIV-1,
represses the cellular miRNA miR-149 of host which
aims the viral accessory protein named Vpr. It is demon-
strated that the Pol and Env protein-coding regions of
the HIV-1 genome generate a few sequences like miRNA
which are homologous with human miR-30e, miR-195,
miR-424 and miR-374a [35, 37, 38].
B-cell tumors naturally developed in cattle are associ-

ated with the infection of bovine leukemia virus (BLV), a
retrovirus with RNA genome [39]. It is reported that
BLV generates a conserved cluster of miRNAs [40].
Interestingly, different from other known miRNAs, this
kind of miRNAs are not cleaved by the endonuclease
Drosha, but shorter RNA polymerase III (pol III), only
the subgenomic small RNAs are cleaved into miRNAs
[41]. This permits the mRNA transcripts and viral
genome to avoid cleavage. The BLV miRNAs are ex-
tremely expressed in malignant and leukemic cells where
the gene expressions of virus are inhibited, proposing a
function on tumor progression and onset [42].
BLV-miR-B4, which is one of BLV miRNAs, has same
targets with miRNA miR-29 of the host [40]. It is illus-
trated that both bovine miR-29a and BLV-miR-B4 target
two transcripts related to B-cell tumorigenesis induced

Table 1 MiRNAs encoded by RNA viruses

Virus MiRNA Targets Proposed function Reference

HIV-1 miR-N367, LTR Downregulate Nef function and virulence [35, 38]

HIV1-miR-H1 AATF Initiates mononuclear cells apoptosis [36]

Bovine leukemia virus BLV-miR-B4 HBP1, PXDN Mimics miR-29 and contributing to BLV
induced tumorigenesis

[40, 41]

Bovine foamy virus BF2-3p
miR-BF1-5p
miR-BF1-3p
miR-BF2-5p, miR-

[43]

Avian leukosis virus E (XSR) [45]

West Nile virus KUN-miR-1 GATA4 Facilitates virus replication [48]

Dengue virus DENV–vsRNA-5 NS1 Virus autoregulation [52]

H5N1 influenza virus miR-HA-3p PCBP2 Contributing to ‘cytokine storm’
and mortality

[54]

Ebola virus miR-VP-3p
EBOV-miR-1-5p
EBOV-miR-1-3p
EBOV-miR-2-3p

[56–58]
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by miR-29 in mice, this discoveries put forward a poten-
tial mechanism that contributes to BLV-induced
tumorigenesis.
It was recently reported that bovine foamy virus (BFV)

could generate miRNAs out of a Pol III transcript within
both cattle and cultured cells infected by BFV [43]. In
this research, a single pri-miRNA (122-nt long) subse-
quently cleaves into two pre-miRNAs then transformed
into miRNAs. The transcript of the miRNA gene
consists in both 30 and 50 end of the integrated prege-
nome, because the pri-miRNA is generated in the U3
region of LTR.
Recently, an alpharetrovirus named avian leukosis

virus (ALV) was discovered to generate a miRNA in the
exogenous virus-specific region, named XSR or E elem-
ent [44]. The E-XSR element exists in some ALV and
Rous Sarcoma Virus (RSV) strains, and their oncogen-
icity has been illustrated [45]. Unlike the BFV and BLV,
ALV appears to utilize the typical miRNA biogenesis
pathway, encodes the miRNA via RNA Pol II and
depends on Dicer and Drosha in the processes.

MicroRNA-like small RNA encoded by West Nile
virus (WNV)
West Nile virus (WNV), a single-chain and
positive-sense RNA virus, causes possibly deadly diseases
infecting animals and humans over the world [46]. The
3’-UTR, especially the terminal 3’ stem -loop (3’SL)
achieves multiple roles in virus-host interactions and
virus replication [47]. Mazhar et al. [48] discovered this
highly conserved 3’SL generates a precursor of a 21-nt
small viral regulatory RNA (svrRNA) and encodes a
microRNA-like small RNA, named KUN-miR-1. What’s
more, silence of Dicer-1 but not Dicer-2 in Aag2 cells
leads to a prominent reduction of KUN-miR-1 levels
and WNV virus replication. In-depth study identifies
KUNmiR-1 targets the cellular mosquito GATA4 mRNA
which results in up-regulation of KUNmiR-1in cells and
GATA4-induction using KUN-miR-1 plays a crucial part
in the process of virus replication of WNV in mosquito
cells. Nevertheless, the small RNA KUNmiR-1is not pro-
duced in mammalian cells infected by WNV. It is specu-
lated that extra regulatory elements in mammalian cells
may prevent the conversion of SL to mature miRNA.
Another possible reason, KUNmiR-1 may be encoded
not much in mammalian cells then consequently not de-
tected by the experimental conditions applied.

MicroRNA-like small RNA encoded by dengue
virus (DENV)
Dengue virus (DENV), a single-stranded RNA virus,
leads to widespread mortal diseases affecting many
people all over the world [49, 50]. There are four differ-
ent serotypes of DENV, includes DENV-1, DENV-2,

DENV-3, and DENV-4 [51]. Mazhar et al. [52] demon-
strates the production of a functional microRNA-like
viral small RNA (vsRNA) encoded by DENV-2. Further
research about six vsRNAs derived DENV demonstrates
the suppression of DENV-vsRNA-5 may cause obvious
increases in the replication of DENV. Besides, experi-
ments illustrate that DENV-vsRNA-5 targets the
nonstructural protein 1 (NS1) sequences of DENV and
as a result regulates viral genome negatively.

MicroRNA-like small RNA encoded by H5N1
influenza virus
H5N1 influenza virus, a single-stranded and
negative-sense RNA, leads to the highest mortality in all
influenza viruses [53]. It is reported that H5N1 influenza
virus generates a microRNA-like small RNA, which was
named miR-HA-3p. MiR-HA-3p is produced out of a
stem loop-including viral RNA precursor cleaved by Ago
2 using Solexa sequencing, qRT-PCR assays and north-
ern blot [54]. Further research demonstrates that the
suppression of poly (rC)-binding protein 2 (PCBP2),
which is an negative regulator of RIG-I/MAVS regulated
by miR-HA-3p could induce ‘cytokine storm’ in H5N1
virus infected macrophages of mice and human. This
discovery provides a possibly efficient treatment strategy
to deal with H5N1 infection, which is based on
antagomir-HA-3p.

MicroRNA-like fragment encoded by Ebola virus
(EBOV)
EBOV is a negative-strand RNA virus which duplicates
in the cytoplasm and leads to a severe hemorrhagic fever
[55]. It is reported that EBOV can encode miRNA-like
fragment to destroy host immune defenses [56, 57].
Chen et al. [58] speculates three pre-miRNAs by the
EBOV/Yambuku-Mayinga sequence and keeps one
pre-miRNA after alignment with 125 EBOV genomes,
then this pre-miRNA creates one mature miRNA se-
quence, miR-VP-3p. Further research discovers the
miRNA-like fragment exists in serum of Ebola virus
disease (EVD) patients by Northern blotting, qRT-PCR
and TA-cloning/sequencing. Interesting, subsequent
consequences discover that this miRNA-like fragment
exists during the acute phase but not during recovery
phase in the serum of EBOV-positive patients. With
great clinical importance, this miRNA-like fragment is
detectable before the detection of Ebola genomic RNA,
which may improve the diagnosis of EVD.

Perspective
Gene expression of virus might be influenced by cellular
miRNAs, and gene expression of cell and virus might be
influenced by viral miRNAs. MiRNAs encoded by DNA
viruses are properly demonstrated. The possibility of
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DNA viruses to encode miRNAs is less surprising
because DNA viruses have giant genome size and are
capable of duplicating in nucleus and associate with a lot
of host proteins [25]. While whether RNA viruses ex-
press miRNAs in a homothetic way to host miRNAs
continues to be in dispute. In the past few years, several
publications have put forward the capability of RNA
viruses to encode miRNAs. The function of miRNAs in
pathogenesis and replication of RNA virus begins to
come up. Even if what we realize with respect to miR-
NAs and RNA viruses is stirring, it’s quite limited and
requires further exploration. In the near future, studies
will not only enhance our total comprehension of RNA
virus-encoded miRNA, but also supply critical informa-
tions about the evolution of miRNA-mediated adjust-
ment of infection caused by RNA virus and potentially
new insights of therapeutic relevance.
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