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Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression at the posttranscriptional level and
play a crucial role in development and many diseases. The discovery of miRNAs has greatly expanded our
understanding of the intricate scenario of genome-wide regulation. Over the last two decades, hundreds of virus-
encoded miRNAs have been identified, most of which are from DNA viruses. Although the number of reported
RNA virus-derived miRNAs is increasing, current knowledge of their roles in physiological and pathological
processes has remained lacking. In this review, we discuss the biogenesis and biological functions of RNA virus-
encoded miRNAs and their proposed roles in virus-host interactions and further underscore their potential value in
the diagnosis and treatment of viral diseases.

Keywords: RNA virus, miRNA, Biogenesis, Biological function

Background
Discovery, biogenesis and functions of miRNAs
MicroRNAs (miRNAs) are a class of small, single-
stranded noncoding RNAs of approximately 22 nucleo-
tides (nt) in length that can regulate the expression of a
target gene at the posttranscriptional level [1–3]. Since
the discovery of the first miRNA, lin-4, 27 years ago [4],
numerous miRNAs have been identified in animals,
plants and viruses [5, 6] and found to play important
roles in development and disease.
Canonical miRNAs are mainly transcribed by RNA

polymerase II (Pol II) to generate the primary miRNA
transcripts (pri-miRNAs) from either the protein-coding
region or the noncoding region of the genome [7]. Pri-
miRNAs are usually more than one kilobase long with
stem-loop structures inside [8]. Pri-miRNA can be
cleaved by the nuclear RNaseIII Drosha to generate ~
60–70 nt precursor miRNA (pre-miRNA) hairpin
followed by export to the cytoplasm where RNaseIII

Dicer further processes pre-miRNAs into ~ 22 nt
double-stranded RNAs [9]. The guide strand (mature
miRNA) of the miRNA duplexes is then loaded into the
RNA-induced silencing complex (RISC), whereas the
other strand is degraded [10, 11].
The miRNA-loaded RISCs (miRISCs) bind the 3′ un-

translated region (3′ UTR) of mRNAs and direct target
transcripts repression [12]. As miRNAs and their targets
are not paired one to one, a single miRNA can target
multiple sites of transcripts and a single gene can be tar-
geted by several miRNAs; miRNAs and their targets are
involved in a complex regulatory network [6, 13].

Virus-host interaction and microRNAs
Viruses, as organic species between living and nonliving
organisms, engage in intracellular obligatory parasitism.
They complete their whole life cycle within host cells by
exploiting host biosynthetic machinery. As viruses can
be thought of as transposons that constantly travel
through hosts [14, 15], it is easy to consider the exist-
ence of coevolution between viruses and their hosts.
Furthermore, following virus infection, host cells will ac-
tivate their defense system to repress viral survival and
replication, and viruses are also destined to respond by
evolving certain mechanisms. Compared with proteins
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and long transcripts encoded by viral genes, miRNAs are
more nonimmunogenic and flexible for viruses to specif-
ically restrain host cell defenses and further establish a
cellular environment that is conducive to viruses [16].
In the year 2004, Pfeffer and colleagues found the first

miRNA encoded by Epstein-Barr virus (EBV), shedding
light on the close relationship between miRNAs and vi-
ruses [17]. To date, 530 viral mature miRNAs have been
identified from several viral families, such as herpesvirus,
polyomavirus, papillomavirus and retroviruses [18, 19]
according to miRBase [20]. The majority of viral miR-
NAs found are encoded by DNA viruses, predominantly
in the herpesvirus family, and they have already been
reviewed in detail for their biogenesis, functions and bio-
logical roles in host interactions as well as diseases [12,
15, 16, 21]. Furthermore, miRNAs encoded by viruses
with RNA genomes have been recorded in an increasing
number of studies; nevertheless, they have not been sys-
tematically reviewed. Here, we list the miRNAs encoded
by diverse RNA viruses that include but are not limited
to retroviruses (Table 1) and then summarize their bio-
logical functions. We also discuss the potential applica-
tion values of these RNA virus-encoded miRNAs in the
clinic.

Main text
Nuclear RNA virus-encoded miRNAs
A virus with an RNA genome is named an RNA virus,
which depending on the type of genome can be subdi-
vided into double-stranded RNA (dsRNA), positive-
sense single-stranded RNA (ssRNA+) and negative-sense

single-stranded RNA (ssRNA−). Various families of RNA
viruses exist, including Retroviridae, Orthomyxoviridae,
Filoviridae, Flaviviridae, and Coronaviridae. Until now,
miRNAs have been identified mainly from HIV-1, BLV
(retrovirus), H5N1 (orthomyxovirus), EBOV (filovirus),
WNV and DENV-2 (flavivirus), as discussed further
below.
Nuclear RNA viruses, including retroviruses and

orthomyxoviruses, complete transcription and replica-
tion of their genomes in the nucleus of host cells, which
is different from other RNA viruses. Retroviruses are a
group of ssRNA+ viruses that are reverse-transcribed
into DNA and then integrated into the host genome to
establish a persistent infection. To date, the large major-
ity of RNA viruses identified to encode miRNAs are ret-
roviruses [36].

MiRNAs encoded by human immunodeficiency virus type 1
(HIV-1)
After the identification of miRNAs from the herpesvirus
family, many efforts have been made to investigate
whether other virus families also encode miRNAs [37].
The possibility of the existence of HIV-encoded miRNAs
has been examined by different groups via computer-
directed analyses. Bennasser et al. proposed 10 extrapo-
lated mature miRNAs within 5 candidate pri-miRNAs
[38], and another screen was performed to find potential
HIV-1 miRNAs and their targets in host cells [39]. Both
of the bioinformatic predictions above reveal multiple
host transcripts that could be regulated by the candidate
HIV-1 miRNAs.

Table 1 RNA virus-encoded miRNAs and their proposed functions

Virus family Virus species miRNA (s) Target Predicted function Ref

Retroviridae HIV-1 miR-N367 Nef Viral replication inhibition [18]

vmiR88, vmiR89 TLR8a Chronic immune activation [22]

miR-H3-3p TATA box in 5′ LTR Viral replication promotion [23]

TAR-derived miRNAs TAR Viral replication inhibition [24, 25]

IER3, ERCC1 Host cell apoptosis inhibition [26]

Aiolos, NPM/B23
Caspase 8, Ikaros

Host cell apoptosis inhibition [27]

BLV miR-B4-3p HBP1, PXDNb Host cell neoplasia induction [19, 28]

ALV-J E (XSR) miRNA [29]

BFV miR-BF1-5p, miR-BF1–3p,
miR-BF2-5p

[30]

Orthomyxoviridae IAV
H5N1

miR-HA-3p PCBP2 Cytokine production enhancement [31]

Flaviviridae WNV KUN-miR-1 GATA4 Viral replication promotion [32]

DENV-2 DENV–vsRNA-5 NS1 Viral replication inhibition [33]

Filoviridae EBOV miR-VP-3p [34]

Zebov-miR-1-5p Importin-α5 Host immune system evasion [35]
aTLR8:vmiR88 and vmiR99 function by directly binding to TLR8 rather than loading into RISCs
bPXDN was confirmed as the target of miR-B4-3p by Kincaid, but significant down-regulation was not observed in ovine tumors
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The first HIV-1 miRNA, named miR-N367, was ex-
perimentally identified in HIV-1-infected MT- 4 T cells
by Omoto et al. in 2004 [18]. MiR-N367 is derived from
the Nef gene [40] and is mainly associated with the
early-stage replication of HIV-1 in host cells. MiR-N367
was recently confirmed by the same group to target the
negative-response element (NRE) of the 5′ long terminal
repeats (LTR) in vitro, which revealed a self-regulation
mode for HIV-1 to repress its replication and maintain
long-term nonprogressor (LTNP) states [41]. Shortly
after that, a miRNA-like vshRNA1 was found in the Env
region of HIV-1 with the ability to target Env without a
detectable short precursor. In another instance, Zhang
and colleagues employed deep sequencing combined
with silico prediction and Northern blotting and identi-
fied miR-H3-3p and its possible precursor derived from
the reverse transcriptase region of HIV-1 [23]. MiR-H3-
3p was found to have high conservation among HIV-1
subtypes and a special ability to elevate the association
between the TATA box and transcription factors by tar-
geting the aforementioned motif of 5′ LTR, which could
increase HIV-1 replication and reduce viral latency.
The trans-activation responsive (TAR) element, which

forms a hairpin structure of ~ 50 nucleotides in length,
is expressed during virus infection and can highly acti-
vate HIV-1 gene expression. An miRNA fragment with
homology to the 5′ stem of the TAR element was de-
tected by Klase et al. via RNase protection assays (RPA).
The TAR stem-loop can be recognized by recombinant
Dicer and processed into an miRNA in vitro. The author
also speculated the ability of the TAR-derived miRNA to
repress HIV-1 replication and further play a potential
role in latency maintenance [24]. They later extended
the functions of the TAR miRNAs by analyzing the
HIV-1-infected gene expression of host cells via micro-
array and found that TAR miRNAs can repress multiple
cellular genes related to apoptosis such as IER3 and
ERCC1, which may be a mechanism for HIV-1 to pre-
vent cell death and promote its survival [26]. Similar re-
sults have also been reported by another independent
group. Ouellet et al. identified two other TAR-derived
miRNAs named miR-TAR-3p and miR-TAR-5p in HIV-
1-infected primary human CD4+ T lymphocytes [42],
and the derived miRNAs could regulate apoptosis
through modulating the caspase 8, Aiolos, Ikaros and
NPM/B23 proteins of infected host cells [27]. Subse-
quently, Harwig et al. employed SOLiD deep-sequencing
and discovered that miRNAs derived from the 3′ side of
the TAR are loaded into RISC [43], which is consistent
with the results from Ouellet and Li [25, 27]. Addition-
ally, TAR-derived miRNAs and vmiR88/89 were identi-
fied by Narayanan [44] and Bernard et al., respectively
[22], in exosomes derived from HIV-1-infected cells as
well as the serum of HIV-positive people. These results,

along with other reports, where viral miRNAs were
found in exosomes during Epstein-Barr virus infection
[45, 46], suggest that viral miRNAs in exosomes from in-
fected cells could play a role in the intercellular spread
of viruses and a potential biomarker for virus detection.
Other researchers employing high-throughput sequen-

cing also proved the existence of the aforementioned
HIV-1-derived miRNAs including TAR-derived and Nef-
derived miRNAs with different abundance [47]. Yeung
et al. detected 3 × 103 copies of TAR-derived miRNAs
and 61 copies of Nef-derived miRNAs per cell infected
with HIV-1 [48], demonstrating along with the afore-
mentioned evidence that TAR miRNAs account for the
majority of HIV-1-encoded miRNAs while miRNAs de-
rived from other regions also exist and are involved in
several viral as well as host cell functions.

MiRNAs encoded by bovine leukemia virus (BLV)
Although a number of HIV-1-derived miRNAs are pre-
sented, controversy somehow exists because of the fol-
lowing reasons: first, the stem-loop structure of the
potential miRNA precursor lying in the genome and
transcripts of an RNA virus will probably increase the
risk of being impaired by Drosha and Dicer; on the other
hand, the miRNAs from HIV-1 show a relatively low
copy number except those from TAR, which may result
in less significant functions physiologically [48, 49].
An elaborate study was conducted by Kincaid et al.

who considered the noncanonical miRNA biogenesis
pathway and established an algorithm based on se-
quences of miRNA precursor and RNA polymerase III
(Pol III) promoter and terminator to predict retrovirus-
encoded miRNAs [19]. MiRNAs from five precursors
were identified by Northern blotting and high-
throughput sequencing in several BLV-infected cell lines.
They further found that these miRNAs are well con-
served, and one of them, miR-B4-3p, has an overlapping
seed sequence with cellular miR-29. They suggested a
Pol III-transcribed manner of miR-B4-3p generation be-
cause of the observation that pre-miRNA was not af-
fected when Pol II was blocked. Researchers then
conducted dependent tests and found that the level of
miR-B4-3p pre-miRNA was not influenced when Drosha
was repressed by siRNAs or when its activity was en-
hanced in vitro, confirming that miR-B4-3p was proc-
essed in a Dicer-dependent and Drosha-independent
manner combined with the observation that pre-miRNA
was increased by Dicer expression. Moreover, the stem-
loop structure lying in the miRNA-coding region of BLV
was identified to have the ability to protect the tran-
scripts from Drosha cleavage, which may enable the
RNA viruses that encode candidate miRNAs to maintain
the stability of their genomes and transcripts to a certain
extent. A consistent observation published by Rosewick
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and colleagues in the same month extended the under-
standing of BLV-encoded miRNAs by revealing that
their generation is independent of the mRNA expression
of BLV, and these miRNAs could also be found in BLV-
infected sheep [28]. Both Kincaid and Rosewick pre-
dicted peroxidasin homolog (PXDN) and HMG-box
transcription factor 1 (HBP1) as the targets of miR-B4-
3p, yet only HBP1 was significantly downregulated in
malignant B cells, pointing to the possibility that miR-
B4-3p functions by repressing HBP1.

MiRNAs encoded by other retroviruses
MiRNAs have been identified in other retroviruses, such
as avian retrovirus and bovine foamy virus, by deep se-
quencing. Yao and colleagues found a conserved miRNA
derived from the E (XSR) element of avian leukosis virus
subgroup J (ALV-J) and confirmed its generation by the
canonical miRNA biogenesis pathway [29]. MiRNAs de-
rived from bovine foamy virus (BFV) were discovered by
Whisnant et al. also via deep sequencing analysis [30].
According to a sequencing analysis of chronically BFV-
infected cells, miR-BF1-5p, miR-BF1–3p and miR-BF2-
5p accounted for over 70% of the total small RNA reads,
which is much higher than the most abundant cellular
miR-21. In addition, three BFV miRNAs were derived
from one Pol III-transcribed pri-miRNA containing two
~ 55 nt stem-loop structures and located in the 3′ LTR
of BFV. They also showed evidence that miR- BF1-5p
and miR-BF2-5p were present in peripheral blood leuko-
cytes (PBLs) from calves infected by BFV for 6months,
demonstrating the in vivo presence of BFV miRNAs.

MiRNAs encoded by influenza A virus (IAV)
Influenza A virus is a negative-stranded RNA virus and
a member of orthomyxoviridae with a ssRNA-genome
that replicates and transcribes its genome in the nucleus
without a DNA stage, similar to retroviruses. Varble
et al. suggested the theoretical possibility that influenza
A virus can encode miRNA via incorporation of cellular
miR-124 hairpin, resulting in considerable expression of
mature miRNA [50]. Of late, our group examined influ-
enza A virus H5N1-infected cells and found a virus-
encoded miRNA, miR-HA-3p, which was named for its
location in the 3p arm of the HA segment [31]. We
demonstrated by using Ago2-knockout cells that Ago2
but not Drosha or Dicer plays a dominant role in miR-
HA-3p production. Given that H5N1 infection can dis-
rupt the release of chemokines and proinflammatory cy-
tokines, leading to a ‘cytokine storm’ and lung damage
[51–54], correlations between viral miRNA and innate
immune responses, especially cytokine production dur-
ing H5N1 infection, were tested. Poly(rC)-binding pro-
tein 2 (PCBP2) was then validated to be regulated by
miR-HA-3p posttranscriptionally. It is known that

PCBP2 can downregulate the RIG-I/MAVS-mediated
signaling pathway and lead to suppression of the cellular
inflammatory response to viral infection [55]. We further
discovered that PCBP2 was significantly elevated, and
cytokine production, such as that of TNF-α, IFN-β, IL-
1β and IL-6, was retarded when miR-HA-3p was blocked
in both monocyte-derived macrophages (MDMs) and
H5N1-infected mice. By blocking miR-HA-3p, we ob-
served that lung inflammation in a mouse model was re-
mitted, and the survival rate was also improved,
revealing a potential therapeutic strategy based on silen-
cing viral-encoded miRNA.

MiRNA derived from cytoplasmic RNA virus
Unlike nuclear RNA viruses, cytoplasmic RNA viruses
spend their whole life cycle in the cytoplasm of host cells
without a DNA intermediate, and they are considered
the least likely to encode bona fide miRNAs because of
both a lack of access to classical miRNA microproces-
sors in the nucleus and the threat of genome
destabilization. Nonetheless, cytoplasmic RNA viruses
such as tick-borne encephalitis virus (TBEV) and Sindbis
virus, which were artificially modified through insertion
of an exogenous miRNA hairpin, were reported to ex-
press functionally mature miRNAs without interfering
with viral replication or expression of essential viral pro-
teins [56, 57]. Thus, natural cytoplasmic RNA viruses
would also employ certain methods to circumvent these
potential barriers, and several viruses including Ebola
virus (EBOV), West Nile virus (WNV) and Dengue virus
2 (DENV-2) have been verified to encode miRNAs.

MiRNAs encoded by WNV and DENV-2
MiRNAs from WNV and DENV were reported by the
same group. These two cytoplasmic RNA viruses with a
ssRNA+ genome belong to the same flavivirus family, in-
cluding a large class of arboviruses threatening the
health of humans and animals worldwide. WNVKUN, a
strain of WNV, was studied, and the production of
KUN-miR-1 from the 3’UTR of WNVKUN was verified
by Hussain and colleagues [32] in the first report, to our
knowledge, of miRNA derived from natural cytoplasmic
RNA viruses. KUN-miR-1 was proven to be processed
by Dicer-1 and only identified in several mosquito C6/36
and Aag2 cell lines infected with WNVKUN but not
mammalian cells, which can be explained by the tissue-
specific expression of miRNAs. In vitro experiments fur-
ther confirmed that KUN-miR-1 could facilitate viral
replication through targeting GATA4; however, this
function was achieved by elevating GATA4 mRNA,
which differs from the normal miRNA function pathway.
They identified DENV-vsRNA-5 from both mosquito
cells and mammalian Vero cells infected with DENV-2,
a serotype of DENV. AGO2 was suggested to engage in
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the biogenesis of DENV-vsRNA-5 via an immunoprecip-
itation (IP) analysis. DENV-vsRNA-5 can directly de-
grade the transcripts of viral nonstructural protein 1
gene (NS1) and trigger viral replication inhibition.

EBOV-encoded miRNAs
Ebola virus disease (EVD) is a severe epidemic disease
caused by EBOV infection. During the 2014–2016 Ebola
outbreak in West Africa, a total of 28,616 cases were re-
ported with more than 11,000 deaths according to the
World Health Organization [58]. Evidence that EBOV
encodes miRNAs was proposed by Liang et al. for the
first time [59]. Concentrating on the underlying diagno-
sis value of EBOV miRNA, the authors screened three
putative miRNAs and selected miR- VP-3p located in
the VP40 region because of its high conservation among
EBOV strains [34]. Northern blotting detected miR-VP-
3p in the exosomal fractions of sera from EBOV-
infected patients. Data from a TaqMan probe-based
qRT-PCR assay showed that the expression level of miR-
VP-3p could not only distinguish patients in acute phase
EBOV from those in recovery phase but also identify
EBOV-positive patients earlier than their EBOV genomic
RNA becoming positive. These findings provide new in-
sights into the role of viral miRNA in early EBOV detec-
tion as well as the likely bioactivity during the virus
infection period. Since then, more EBOV-derived miR-
NAs such as Zebov-miR-1-5p and miR-T1-5p have been
predicted and explored by different groups [35, 60, 61].
Although discrepant observations of the expression
levels of miRNAs were suggested to be caused by diverse
testing techniques [61], together with all the studies
mentioned above, we can still conclude that bona fide
miRNAs are sufficiently encoded by EBOV and released
by viral infected host cells, making cell-free EBOV
miRNA a potentially powerful tool in the early diagnosis
of virus infection.

Conclusions
Until now, miRNAs discovered from RNA viruses, in-
cluding retrovirus, orthomyxovirus, flavivirus and filo-
virus, have fewer species and lower abundance than
those from DNA viruses. Among over 500 viral miRNAs
recorded by miRBase [20], only approximately 30 are
mature RNA virus- encoded miRNAs. The discovery of
these viral miRNAs add more insights into our know-
ledge of relatioship between viruses and miRNAs, how-
ever, pitfalls still exist in current studies. Results from
some studies failed be replicated by following deep se-
quencing or by different experimental methods. Due to
low copy number of some RNA-derived miRNAs, differ-
ent extraction and verification protocols could have a
considerable impact on the qualitative and quantitative
data of miRNAs. Also, controversies still exist partly due

to several barriers such as cytoplasmic RNA virus having
no access to the whole miRNA processing machinery
and viral genome instability induced by endonuclease
that can recognize the miRNA-encoding stem-loop
structure [62]. Nevertheless, some evidence shows that
some RNA viruses will take advantage of the noncanoni-
cal biogenesis pathway in host cells to generate their
own miRNAs, and certain stem-loop structures within
their genomes and transcripts are likely resistant to
RNase digestion [19]. The fact that several groups have
failed to find the aforementioned miRNAs actually raise
doubts about their authenticity [63, 64]; thus, a well-
established methodology combining multiple computa-
tional and experimental analyses must be utilized to
yield reliable and reproducible results.
Whether there is a general mechanism of biogenesis

and biological functions of RNA virus-derived miRNAs
remains unclear. According to existing reports, RNA vi-
ruses will employ various RNA endonucleases, including
Dicer and Ago, to catalyze maturation of their miRNAs,
and not all viral miRNAs identified have been found
with a valid target or certain functions. However, miR-
NAs encoded by viruses such as HIV-1 and H5N1,
which have verified target and biological functions, will
provide a deeper understanding of virus pathogenesis
mechanism as well as novel therapeutic targets for drug
development to treat these virus-caused diseases. Fur-
thermore, considering the high mutation rate of RNA vi-
ruses, some of these miRNAs, especially those without
high conservation among strains, may be a product of
RNA virus mutation and evolution; however, more evi-
dence supporting this concept remains to be explored.
A few RNA virus-derived miRNAs are also present in

exosomes from host cells and stably exist in the serum
and plasma of people infected with EBOV and HIV-1
[34, 44]. It is widely known that in multicellular organ-
isms, miRNAs secreted by cells can reach remote tissues
and organs to mediate their target genes as well as sig-
naling pathways, and they have been shown to play a
crucial role in multiple physiological and pathological
processes [65–68]. Evidence suggests that exogenous
miRNA originating from RNA viruses could also partici-
pate in intercellular communication, making bystander
cells more susceptible to viral infection. Indeed, whether
viral and endogenous miRNAs share the same pack-
aging, secretion and function mechanism is still un-
known. Moreover, RNA virus-encoded miRNA that is
detectable before the viral genome becomes positive in
serum and plasma may serve as a biomarker for EBOV
and other viruses, which will help with promoting virus
detection accuracy and advancing the diagnosable win-
dow. In this regard, it is worth asking if the range of
RNA viruses that encode secreted miRNAs can be ex-
tended when more viruses are tested. Moreover, no

Zhan et al. ExRNA            (2020) 2:15 Page 5 of 7



miRNA has been identified from the newly discovered
coronavirus SARS- CoV-2, which is causing the world-
wide epidemic COVID-19, and the Middle East respira-
tory syndrome coronavirus (MERS-CoV), which causes
MERS. However, studies on determining the existence
and latent diagnosis value of these recently appeared
coronaviruses are still ongoing.
Cumulatively, despite many examples during the last

20 years, current knowledge on RNA virus-encoded
miRNAs is still lacking in contrast with their analogues
from DNA viruses. Nonetheless, efforts that have been
made to uncover the detailed mechanism of biogenesis,
roles in virus-host interaction and possibility of being a
biomarker will definitely provide priceless insights into
this area.
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