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metabolic disorders
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Abstract

The kidney requires large amount of energy to regulate the balance of fluid, electrolytes and acid-base homeostasis.
Mitochondria provide indispensible energy to drive these functions. Diverse energy sources such as fatty acid and
glucose are fueled for ATP production at different renal sites controlled by a fine-tuned regulation mechanism.
microRNAs (miRNAs) have been implicated in the pathogenesis of various kidney diseases. Recent studies have
highlighted their contributions to metabolic abnormalities. Characterization of the miRNAs in renal metabolic
disorders may promote a better understanding of the molecular mechanism of these diseases and potentially serve
as therapeutic targets.
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Introduction
The kidney requires a large amount of energy to enable
the reabsorption of nutrients and regulation of electro-
lytes, fluid and acid-base balance. Maintenance of meta-
bolic homeostasis is critical to functioning of the kidney
and possibly requires a fine-tuned regulation mechanism.
Global analysis has demonstrated that various metabolic
disorders are corrected with the alternation of microRNA
(miRNA) expression profile, suggesting vital roles of miR-
NAs in maintaining organ energy homeostasis.
miRNAs are small non-coding RNAs of ~ 22 nucleo-

tides that regulate gene expression at the post-
transcriptional level. miRNA is transcribed from inter-
genic, intronic or polycistronic loci as precursor RNAs
(pri-miRNA) in canonical biogenesis pathway [1]. The
stem-loop structure from the pri-miRNA is processed by
Drosha and DGCR8 or the nuclear spliceosome apparatus.
As an alternative way, miRNAs are non-canonically tran-
scribed as endogenous short hairpin RNAs (shRNAs) or
derive through splicing from introns (mirtrons) [2]. Then
the pre-miRNA are transported to the cytosol by
exportin-5 and Ran-GTP-dependent processes and are
further processed by complex of RNase III, Dicer and
TRBP to form the mature miRNA. miRNA duplex is then
unwind by argonaut proteins (Ago2) and incorporates into

the argonaut-containing RNA-induced silencing complex
(RISC). The RISC-miRNA assembly is then guided to spe-
cific target sequences in mRNAs chiefly located in the
3’UTR by Watson-Crick base-pairing of nucleotides 2–8
in the mature miRNA, also called the seed sequence [3].
In this review, we briefly introduce the metabolic feature

of the kidney and then discuss the advances in under-
standing the emerging roles of miRNAs in modulating
metabolic disorders, particularly on mitochondrial homeo-
stasis, lipid and glucose metabolism.

Metabolic characterizations of the kidney
The kidney functions to remove waste and regulate fluid
and electrolyte balance. The active reabsorption of glu-
cose, sodium and other metabolites from glomerular fil-
trate is a power task [4–6] that makes the kidney one of
the most energy-demanding organ and the highest rest-
ing metabolic rates in our body [7]. To provide sufficient
energy, the kidney is equipped with the highest mito-
chondrial content and consumes most of the oxygen
only secondary to the heart [8, 9]. Moreover, the prox-
imal convoluted tubular cells and the thick ascending
loop of Henle (TAL) cells in the kidney cortex contain
the majority of the renal mitochondria [10–14] which
use the majority of kidney consumed oxygen to generate
ATP [4–6].
In healthy conditions, large quantities of the renal

ATP are produced within the mitochondria via oxidative
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phosphorylation (OXPHOS) [5, 14, 15]. Electrons from
NADH and FADH2 produced by tricarboxylic acid
(TCA) cycle are transferred to complex I and complex
II, respectively and then through complex III to complex
IV to be accepted by oxygen. Concurrently, protons are
pumped across the membrane through complexes I, III
and IV, and ultimately, flow through complex V (ATP
synthase) to drive the production of ATP from ADP.
Different renal sites have diverse fuel preference

(Table 1). The tubulointerstitial compartment except the
glomeruli, utilize free fatty acid (FFA) via β-oxidation and
ketone oxidation for ATP generation [16]. Glucose oxida-
tion is preferred in the TAL and the glomerular cells.
Whereas, glucose anaerobic metabolism occurs in the
more hypoxic renal medulla [17]. Aerobic metabolism of a
single molecule of glucose produces 36 molecules of ATP
which is more efficient than the production of 2 molecules
of ATP by anaerobic metabolism [17]. The FFA oxidation,
such as a molecule of palmitic acid produces 106 mole-
cules of ATP, is even more efficient [17]. It is worth note
that proximal tubular cells (PTCs) produce glucose from
lactate, glutamate and glycerol via gluconeogenesis [18,
19] that also require ATP [20, 21]. The ATP is also re-
quired for glomerular filtration and for the synthesis of
hormone and proteins, although ATP for these processes
are much lower than the reabsorption [7]. The fuel prefer-
ences tend to reflect the energy demands at different renal
sites in the physiological conditions. The ATP production
and energy source is actually flexible. Glomerular cells, in-
cluding podocytes, endothelial cells and mesengial cells
have the ability of aerobic and anaerobic respiration in
basal cell processes [22–25]. In the absence of glucose,
amino acid can be alternatively utilized to generate pyru-
vate to fuel glycolysis and OXPHOS [26, 27] (Fig. 1).
Taken together, many renal cells have high metabolic

rates and are highly dependent on mitochondrial gener-
ation of ATP to maintain their physiological morphology
and functions.

miRNA regulates lipid metabolism
Fatty acid is one of the major energy sources of the kid-
ney similarly to the heart [16, 28]. The key components
of fatty acid oxidation are targets of various miRNAs.

Carnitine palmitoyltransferase 1α (CPT1α) mediates the
entrance of fatty acid to mitochondria [29], which has
been shown to be targeted by miR-33 family [30, 31] and
miR-370 [32]. miR-142 targets CPT1α to regulate meta-
bolic reprogramming during immunogenic response [33].
Carnitine ctanoyl transferase (CROT) is a peroxisomal

enzyme that allows short chain fatty acid to enter into the
mitochondria [29]. miR-33a, miR-33b and the complemen-
tary strand miR-33a-3p has been found to target CROT
and therefore affect fatty acid β oxidation [30, 31, 34].
Moreover, the intronic region of sterol-regulatory element
binding proteins (SREBP2) [35] and SREBP1 [36] genes en-
code miR-33a and miR-33b, which also targets the 3-
ketoacyl-coA thiolase to regulate fatty acid oxidation [31].
In addition, miR-33a and miR-33b was found to target sir-
tuin SIRT6 [37], a NAD+-dependent histone deacetylase
[38–41]. miR-33 inhibits SIRT6 and leads to acetylation of
SREBP1 targeted acetyl-coA carboxylase 1 (ACC1),
stearoyl-coA desaturase 1 and fatty acid synthase (FASN),
which results in repression of lipogenesis [31].
miR-122 antisense significantly reduces plasma choles-

terol level [42, 43]. Transfecting of miR-122 reduces the
transcription of aldolase-A in hepatocarcinoma cell line
[42]. Pantothenate kinase 1 (PANK) is involved in the
synthesis of coenzyme A, which is a cofactor in lipid me-
tabolism [44]. In the intronic sequence of the PANK1α
gene locates the miR-103 and miR-107 which affects
lipid metabolism [45]. miR-224 targets acyl-coA synthe-
tase long chain family (ACSL4) [45] and alters fatty acid
oxidation [46].
Gene expression profiling identifies the upregulation

of a group of lipid metabolic genes in the absence of
miR-21, including the direct target of miR-21, peroxi-
some proliferator activated receptor α (PPARα) [47].
miR-21 promotes renal fibrosis by targeting PPARα and
Mpv171 to silence lipid metabolic pathway and aggra-
vates ROS generation, respectively [47]. Moreover, miR-
21 silencing enhances PPARα/retinoid X receptor and
the downstream pathways that protects mitochondrial
function and relieves inflammation and fibrogenesis in
renal tubule and glomeruli [48]. miR-17 is identified as a
novel target for treatment of autosomal dominant poly-
cystic kidney disease (ADPKD), which is the downstream

Table 1 Fuel preference for energy production in different segment of the kidney under physiologic and challenged conditions

Energy fuel preference Proximal convoluted
tubule

Distal convoluted
tubule

Thick ascending
loop

Glomeruli Thin descending
loop

Collecting
duct

Physiologic preferred
fuel

Fatty acid
Lactate
Glutamine

Fatty acid
Ketones
Lactate

Fatty acid
Glucose
Ketones

Glucose
Lactate

Glucose
Lactate
Glutamine

Glucose

Use under challenge Ketones Glucose Lactate Fatty acid Ketones Lactate
Glutamine

Rarely use Glucose Glutamine Glutamine Ketones
Glutamine

Fatty acid Fatty acid
Ketones
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of c-myc and inhibit OXPHOS and stimulate prolifera-
tion to aggravate cyst growth via directly repress of
PPARα [49]. Similarly, miR-105 regulates the sustained
cell growth by targeting MYC [50].
PPARδ mediates the metabolic switch from fatty acid oxi-

dation to glycolysis [51]. miR-199a targets PPARδ to increase
lipid accumulation and affects mitochondrial content in heart
and liver [52]. PPARδ is also the target of miR-29a [53].
AMP-dependent kinase (AMPK) signaling and insulin re-

ceptor signaling pathways are critical cellular energy path-
ways such as lipid and glucose metabolism [54]. AMPKα1 is
targeted by miR-33a and miR-33b [37, 55], which mediates
the inhibition of SREBP or phosphorylation and deactivation
of SREBP-targeted ACC1 [56, 57]. The insulin receptor sub-
strate 2 (IRS2), one of the adaptor proteins that relays insu-
lin receptor signaling to the downstream effectors, is also
the target of miR-33 [37]. Reduced IRS2 and compensatory
elevation of IRS1 activates SREBP1 [58], which explains the
effect of miR-33 on lipid deposition and hepatosteatosis.
In summary, these results suggest an integrated and

extensive interaction between the targets and their miR-
NAs to regulate lipid metabolism (Fig. 2).

miRNA modulates glucose metabolism and
glycolysis related signaling pathways
Several miRNAs regulates the tissue responses to insulin
and glucose metabolism. In diabetes, miR-29a and miR-

29b are upregulated in muscle and liver [59], which re-
press insulin signaling stimulation protein caveolin 2
(CAV2) [60, 61], SREBP negative regulator insulin-
induced gene 1 (INSIG1) and insulin intermediate PI3
kinase subunit p85α [59]. miR-126 targets IRS1 to in-
duce insulin signaling inhibition [62]. miR-223 inhibit
glucose uptake in skeletal muscle by targeting glucose
transporter GLUT4 [63]. miR-103 and miR-107 are
probably therapeutic targets for relieving insulin resist-
ance [64]. They affect the availability of insulin receptor
by targeting CAV1 [65]. Interestingly, miR-103 and miR-
107 are inhibitors of Dicer and their effects are also pre-
sumably mediated via other miRNAs [66]. miR-143 is
high in diabetic db/db mice and contributes to the re-
duced insulin signaling sensitivity possibly by targeting
Akt related oxysterol-binding protein-related 8 (ORP8)
[67]. let-7 miRNA family, also increased in diabetic mice
probably results in impaired insulin signaling through
targeting insulin-like growth factor 1 receptor (IGF1R)
and IRS2 [68].
In proliferative cells such as tumor, several miRNAs

have been found to directly target enzymes and trans-
porters involved in the process of glycolysis. Downregu-
lation of miR-106a results in de-repression of GLUT3
and promotes glycolysis [21, 69, 70]. Similarly, downreg-
ulation of miR-195-5p leads to de-repression of its target
GLUT3 and increases the uptake of glucose in bladder

Fig. 1 Oxidation of the substrates for energy production in renal mitochondria. Free fatty acids, ketones, glucose, lactate and glutamine are renal cell
fuels. They are used for mitochondrial ATP production through the TCA cycle and OXPHOS. ANT, adenine nucleotide translocase; CPT1, carnitine
palmitoyltransferase 1; CPT2, carnitine palmitoyltransferase 2; GAT, mitochondrial glutamate transporter; MPC, mitochondrial pyruvate carrier
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cancer [71]. miR-144 targets GLUT1 which results in re-
duced glucose uptake and lactate production in lung
cancer cells [72]. GLUT1 is also the target of miR-1291
and miR-328 in renal cell carcinoma [73] and colon can-
cer cell [74], respectively.
The glycolytic enzyme hexokinase 2 (HK2) is the direct

target of miR-143 [75]. In addition, HK2 is indirectly regu-
lated by miR-124 and miR-155 both via STAT3 [76, 77].
miR-128, miR-135 and miR-320 target phosphofructokinase
(PFK) which is downregulated in lung cancer [78–80].
SIRT2 specifically targeted by miR-200c is a critical
regulator of several glycolytic enzymes, including aldolase,
glyceraldehyde-3-phosphate dehydrogenase (GAPDH),
phosphoglycerate kinase (PGK), and enolase [81].
Pyruvate kinase type M2 (PKM2) is targeted by let-7a

[82]. Moreover, c-Myc targeted by let-7, is also the activator
of hetergenous nucler ribonucleoprotein A1 (hnRNPA1)
splicing factor, which in turn downregulates let-7 and forms
a positive feedback loop consisting of let-7a/c-Myc/
hnRNPA1/PKM2 [82]. PKM2 is also the target of miR-326
in regulation of cell proliferation [83]. PKM2 is targeted by
miR133a/b in tongue squamouse cell carcinoma [84–86].
The PKM2 targeted by miR-122 is shown to induce meta-
bolic switch from glycolysis to OXPHOS [87]. miR-340,
miR-124 and miR-137 target the alternative splicing proteins
hnRNPI/hnRNPA1/hnRNPA2, which make the PK PKM2
[88]. miR-26a targets pyruvate dehydrogenase protein X
(PDHX) to promote glycolysis and repress OXPHOS [89].
miR-34 targets lactate dehydrogenase A (LDHA) and is

also reduced in breast cancer [90, 91]. LDHB is the target of
miR-375 [92–94]. miR-124 and miR-342-3p target lactate
monocarboxylate transporter 1 (MCT1) to inhibit the trans-
port of lactate from cytosol to extracellular space [95, 96].
Besides insulin receptor signaling, glycolytic metabol-

ism is also regulated by receptor tyrosine kinases (RTKs)
and the downstream effecter pathways, including c-Met,
platelet-derived growth factor receptor α (PDGFRA), epi-
dermal growth factor receptor (EGFR), RAS pathway,

PI3K/Akt, mTOR and c-myc. c-Met is targeted by miR-
410 [97], miR-144-3p [98], and miR-34a [99–102]. In
addition, miR-34a also targets PDGFRA [102]. miR-128
targets PDGFRA and EGFR [103]. Furthermore, EGFR is
the target of miR-219-5p [104, 105] and miR-7 [106, 107].
miR-9-targeted NF1 is the antagonist of RAS [108]. N-

RAS is the target of miR-143 [109] and miR-340 [110,
111]. K-RAS is targeted by let-7a [112] and miR-134
[113]. Most of the miRNAs are aforementioned as glyco-
lytic targeting miRNAs, suggesting a strong correlation
between RAS and glycolysis.
Activation of PI3K/Akt pathway contributes to the en-

hanced glycolysis. miR-7 directly targets PI3K [114]. The
downstream Akt is targeted by miR-542-3p [115]. miR-
21 indirectly regulates PI3K through targeting its antag-
onist PTEN [116]. Moreover, PTEN is the target of miR-
26a [117], miR-1908 [118], miR-494-3p [119], miR-10a/b
[120], and miR-21/221 [121, 122].
The PI3K/Akt downstream pathway mTORC1 is the

promoter for glycolysis and negatively regulated by
AMPK. mTORC1 is indirectly regulated by miR-451 via
targeting CAB39, which binds the AMPK activator
LKB1 [123, 124]. miR-199a-3p targets mTORC1 and
mTORC2 [125]. miR-34a suppresses Rictor, which is the
binding partner of mTORC2 [101, 126].
c-Myc is regulated by mTORC2 via FoxO3a and is dir-

ectly targeted by miR-34c [127]. Interestingly, FoxO3a
positively regulates miR-34c [127]. On the contrary,
FoxO3a is the target of miR-155 [128].
In conclusion, multiple miRNAs have been shown to

affect glucose homeostasis (Fig. 3) and insulin signaling
pathway (Fig. 4). The regulatory loops composed of
miRNA/glycolysis related signaling pathways/glycolysis
are possibly universal in proliferative cells.

miRNA in amino acid metabolism
Synthesis and breakdown of amino acid are mainly oc-
curs within the mitochondria. The amino acid is also the

Fig. 2 miRNA regulation of lipid metabolism. A schematic of miRNA-regulatory network in lipid metabolism. ACSL4, acyl-coA synthetase long
chain 4; AMPKα1, AMP-dependent kinase α1; CPT1α, carnitine palmitoyltransferase 1α; CROT, carnitine ctanoyl transferase; IRS, insulin receptor
substrate; PANK, pantothenate kinase; PPAR, peroxisome proliferator activated receptor; SREBP, sterol-regulatory element binding proteins
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energy source of renal tubular cells [16]. Previous studies
have shown that amino acid metabolism is regulated by
multiple miRNAs. miR-193b regulates serine hydroxyl
transferase (SHMT2), which converts serine to glycine
[129]. miR-23a and miR-23b have been implicated in
proliferative cells to control the expression of glutamin-
ase in mitochondria [130]. Interestingly, their downregu-
lation following c-myc overexpression is also observed
during sustained cell proliferation and transformation
[130]. The target of miR-29b, digydrolipoyl branched
chain acyltransferase is one of the components of
branched chain α-ketoacid degydrogenase, which medi-
ates the catabolism of leucin, isoleucine and valine [131].

miRNA modulates the mitochondrial homeostasis
mitomiRs and mitochondria
miRNAs that locate inside the mitochondria are termed
mitomiRs, either encoded by the mitochondrial genome
or transported into the organelle [132, 133]. miRNAs are
not expressed in cells without mitochondrial DNA
(mtDNA) suggests that human and mouse mitochon-
drial genome could encode miRNAs [134]. Moreover,
the presence of pre-miR and the corresponding mature

miRNAs in mitochondria suggests that miRNA process-
ing may occur in the mitochondria. It is possible that
nuclear-encoded miRNAs may be imported into mito-
chondria [133, 135, 136] where to regulate mtDNA
translation [135]. MitomiRs have distinguishable charac-
teristics that separate them from cytosolic miRNA, such
as an unusual size between 17 and 25 nt and unique
thermodynamic features, which are speculated to facili-
tate their entry to mitochondria [136]. Multiple putative
mitomiR binding sites were revealed on the mtDNA in
silico studies [133]; however, evidence showing the im-
port of miRNA into mitochondria is still lacking. Isola-
tion of mitochondria without the contamination of other
membrane vesicles remains the major technical obstacle
and interpretation of the data should be taken with cau-
tion. Whether mitochondria-produced miRNA can be
exported to the cytoplasm is still controversial. The
mitochondrial-like transcripts probably come from mito-
chondrial genome equivalents within the nuclear gen-
ome [137–139].
Evidence of mitomiRs in renal cells remains poorly no-

ticed. The muscle-specific miR-1 enhances mtDNA-
encoded transcripts inside the mitochondria of cardiac

Fig. 3 miRNA regulation of glycolytic enzymes and transporters. A schematic of miRNA-regulatory network in glycolysis. GAPDH, glyceraldehyde-
3-phosphate dehydrogenase; GLUT, glucose transporter; HK2, hexokinase 2; hnRNPA, hetergenous nucler ribonucleoprotein A; PDHX, pyruvate
dehydrogenase protein X; PFK, phosphofructokinase; PGK, phosphoglycerate kinase; PKM2, pyruvate kinase type M2; LDH, lactate dehydrogenase;
MCT1, monocarboxylate transporter 1
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and skeletal muscle [135]; however, the direct evidence
showing the binding of miR-1 to mitochondrial tran-
scripts was lacking. It is also interesting because the
translational stimulation effect of miRNAs was merely
reported previously. The rat cardiac-specific mitomiR,
miR-181c is enriched 2-fold in mitochondria compared
to the whole heart, which targets the mRNA of cyto-
chrome c oxidase subunit I (COX1) and regulates mito-
chondrial respiration [140]. In addition, administration of
miR-181c regulates mitochondrial genes and leads to car-
diac dysfunction [141]. More reports indicate the role of
miR-181a in regulation of mitochondrial apoptosis path-
way [142]. In cisplatin-induced acute kidney injury (AKI),
repression of mitochondrial resident protein Bcl-1 by
miR-181 leads to proximal tubular cells injury [143]. Re-
cent research reveals a panel of aging-related mitomiRs
(let7b, miR-146a, −133b, −106a, −19b, −20a, −34a, −181a
and − 221) targets a number of mitochondrial resident
proteins besides Bcl-1 [144]. miR-378 binds to the mito-
chondrial transcriptome locus of ATP6, which is a subunit
of the F0 complex of the complex V (ATP synthase) and
finally impacts ATP generation [145]. During the process
of skeletal muscle maturation, miR-1/133a targets the
Mef2A/Dik1-Dio3 gene cluster and modulates the expres-
sion of multiple miRNAs which then suppress the mito-
chondrial genes [146].
Conformation of the existence of mitomiRs in the kid-

ney tissue and exploration of their pathophysiologic
functions will be of great interest and promising.

Canonical miRNA and mitochondria
It is shown that a couple of canonical miRNAs regulates
mitochondrial functions including TCA, OXPHOS via

mechanisms in the cytosol. Brain-specific miRNA, miR-
338 reduces nuclear genome encoded cytochrome c oxi-
dase subunit IV (COX4), which regulates ROS level
[147]. Under hypoxic conditions, miR-210 is markedly
induced and directly represses OXPHOS by targeting
the iron-sulfur cluster scaffold (ISCU) and cytochrome c
oxidase assembly protein (COX10), which ultimately
contributes to the metabolic shift from OXPHOS to gly-
colysis [148, 149]. Moreover, miR-210 could regulate
complex II activity by targeting its subunit succinate de-
hydrogenase subunit D (SDHD) [150]. miR-335 and
miR-34a target mitochondrial superoxide dismutase 2
(SOD2) and thioredoxin reductase 2 (TR2) and therefore
regulate oxidative damage and cell senescence [151]. In-
creased NADPH oxidase resulted from the decrease of
miR-25 in diabetic kidney causes oxidative stress in mes-
enchymal cells [152].
The enzyme activity of pyruvate dehydrogenase (PDH)

is reduced when its subunit X is targeted by miR-26a,
which leads to accumulation of pyruvate with decrease
of acetyl-coA [89]. It has been reported that citrate syn-
thase (CS) is targeted by several miRNAs, including
miR-152, −148a, −148b, − 299, −19a, −19b, −122a, − 421
and − 494 [153].
miR-124 downregulates succinate coA ligase GDP form-

ing β subunit (SUCLG2) and represses the conversion of
succinate to succinyl coA [154]. Downregulation of isoci-
trate dehydrogenase (IDH) by miR-183 and malate deht-
drogenase (MDH) by miR-743a within the TCA cycle
results in a metabolic shift toward glycolytic status [155].
The ADP-ribosylation factor-like 2 (ARL2) is a common
target for miR-15b, − 16, − 195, − 424 [156], which affects
mitochondrial degradation and ATP production [157].

Fig. 4 miRNA regulation of glycolysis related signaling pathways. A schematic of miRNA-regulatory network in glycolytic signaling pathways.
AMPK, AMP-dependent kinase; CAV, caveolin; EGFR, epidermal growth factor receptor; IGF1R, insulin-like growth factor 1 receptor; INSIG1, insulin-
induced gene 1; ORP8, oxysterol-binding protein-related 8; PDGFRA, platelet-derived growth factor receptor α
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Other miRNAs have been implicated in modulation of
mitochondrial dynamics. miR-30 family member are
found to regulate Drp1 by targeting p53 [158]. Notably,
miR-30/p53/Drp1 limits mitochondrial fission and pro-
motes mitochondrial fusion, which has been suggested
to be particularly important in high energy demanding
organs such as the cardiac tissue [158]. miR-30/p53/
Drp1 axis may also prevent the loss of cells with less
self-renewal capacity by the increase of threshold for
apoptotic activation [158]. This might be identified in
kidney tissues that have the similar physiologic features.
miR-26 promotes mitochondrial uncoupling and in-

duces energy dissipation in brown adipocytes by increas-
ing uncoupling protein 1 (UCP1) and leads to a slight
increase of cristae density [159]. Additionally, miR-27a
and miR-27b were shown to regulate mitochondrial bio-
genesis, structure integrity and complex I activity during
adipogenesis by targeting prohibitin [160]. The miR-149/
poly (ADP-ribose) polymerase-1 (PARP-1)/NAD+/SIRT-
1 axis increases mitochondrial function and biogenesis
through PGC-1α activation in skeletal muscle [161].
miR-378 downregulates caspase 3 and inhibits apop-

tosis in cardiac tissue [162]. The aforementioned miR-1
targets insulin-like growth factor (IGF), decreases mito-
chondrial membrane potential and leads to the release
of caspase 3 [163].
In summary, increasing evidences suggest that these

mitochondrial functional regulating miRNAs are

possibly mitomiRs and mediate nuclear regulation of
mitochondrial functions and mitochondrial retrograde
cellular adaptive signals (Fig. 5).

Conclusion and perspective
Thousands of miRNAs have been shown to regulate nu-
merous aspects in human physiological and pathological
conditions. As we mentioned here, a growing number of
miRNAs have been implicated in regulating metabolic
disorders and maintaining mitochondrial homeostasis
(Table 2). This could suggest similar regulatory roles of
miRNAs in kidney metabolic diseases. It is necessary to
carry out functional validation studies in human and
models of kidney diseases to establish such link between
miRNA expressions and their regulatory role in renal
metabolic disorders. Moreover, as compared to trad-
itional medications toward several druggable targets, the
potential therapeutic implications for treatment of kid-
ney diseases by targeting the aberrant miRNAs seem ex-
citing in the clinical perspective. However, proteins are
probably regulated by plenty of miRNAs because of the
multiple target sites in mRNAs. In addition, miRNAs al-
ways have many target proteins because of the similar
target sequences in mRNAs. The possible off-target ef-
fect and long-term consequences of miRNA-targeted
therapeutics remain unknown. These will certainly be
the topics for intensive research in the near future.

Fig. 5 miRNA regulation of mitochondrial function and homeostasis. A schematic of miRNA-regulatory network in mitochondrial function and
homeostasis. ARL2; ADP-ribosylation factor-like 2; COX, cytochrome c oxidase; CS, citrate synthase; IDH, isocitrate dehydrogenase; Δψm,
mitochondrial membrane potential; IGF, insulin-like growth factor; ISCU, iron-sulfur cluster scaffold; MDH, malate dehtdrogenase; mtDNA,
mitochondrial DNA; OXPHOS, oxidative phosphorylation; PARP-1, poly (ADP-ribose) polymerase-1; SDH, succinate dehydrogenase; SOD2,
superoxide dismutase 2; SUCLG2, succinate coA ligase GDP forming β subunit; TCA, tricarboxylic acid; TR2, thioredoxin reductase 2
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Table 2 Regulation of miRNA on metabolic pathways

miRNA Targets Metabolic pathways References

miR-33 CPT1α Lipid metabolism [30, 31]

CROT [30, 31,
34]

3-ketoacyl-coA thiolase [31]

SIRT6 [37]

AMPKα1 [28, 55]

IRS2 [37]

miR-370 CPT1α [32]

miR-142 [33]

miR-122 aldolase-A [42]

miR-103, − 107 PANK [45]

miR-224 ACSL4 [46]

miR-21 PPARα [47, 48]

Mpv171 [47]

miR-17 PPARα [49]

miR-105 MYC [50]

miR-199a PPARδ [52]

miR-29a [53]

miR-223 GLUT4 Glucose metabolism [63]

miR-106a GLUT3 [21, 69,
70]

miR-195-5p [71]

miR-144 GLUT1 [72]

miR-1291 [73]

miR-328 [74]

miR-143 HK2 [75]

miR-155 STAT3 [76]

miR-124 [77]

miR-128 PFK [78]

miR-320 [79]

miR-135 [80]

miR-200c SIRT2 [81]

Let-7 PKM2, c-Myc [82]

miR-326 PKM2 [83]

miR-133a, −133b [84–86]

miR-122 [87]

miR-26a PDHX [89]

miR-34 LDHA [90, 91]

miR-375 LDHB [92–94]

miR-124 MCT1 [95]

miR-342-3p [96]

miR-29 INSIG1, PI3K subunit p85α Glycolytic related pathways [59]

CAV2 [60, 61]

miR-126 IRS1 [62]

miR-103, −107 CAV1 [65]
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Table 2 Regulation of miRNA on metabolic pathways (Continued)

miRNA Targets Metabolic pathways References

miR-143 ORP 8 [67]

Let-7 IGF1R, IRS2 [68]

miR-340, − 124, − 137 hnRNPI, hnRNPA1, hnRNPA2 [88]

miR-410 c-Met [97]

miR-144-3p [98]

miR-34a [99–102]

miR-34a PDGFRA [102]

miR-128 PDGFRA, EGFR [103]

miR-219-5p EGFR [104, 105]

miR-7 [106, 107]

miR-9 NF1 [108]

miR-143 N-RAS [109]

miR-340 [110, 111]

Let-7a K-RAS [112]

miR-134 [113]

miR-7 PI3K [114]

miR-542-3p Akt [115]

miR-21 PTEN [116]

miR-26a [117]

miR-1908 [118]

miR-494-3p [119]

miR-10a, −10b [120]

miR-21, − 221 [121, 122]

miR-451 CAB39 [123, 124]

miR-199a-3p mTORC1, mTORC2 [125]

miR-34a Rictor [101, 126]

miR-34c c-Myc [127]

miR-155 FoxO3a [128]

miR-193b SHMT2 Amino acid metabolism [129]

miR-23a, 23b Glutaminase [130]

miR-29b Digydrolipoyl branched chain
acyltransferase

[131]

miR-1 ND1, COX1 Mitochondrial respiration and
homeostasis

[135]

miR-181c COX1 [140–142]

let7b, miR-146a, −133b, −106a, −19b, −20a, −34a,
−181a, − 221

Bcl-1 [143, 144]

miR-378 ATP synthase [145]

miR-1, −133a Mef2A, Dik1-Dio3 [146]

miR-388 COX4 [147]

miR-210 ISCU, COX10 [148, 149]

SDHD [150]

miR-355, −34a SOD2, TR2 [151]

miR-25 NADPH oxidase [152]

miR-26a PDHX [89]

miR-152, −148a, −148b, − 299, −19a, −19b, −122a, − CS [153]
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