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Abstract

MicroRNA (miRNA) dysregulation is causal in most, if not all, cancers. They silence the gene’s expression by modulating
messenger RNA (mRNA) through employing translational repression or degradation. MiRNA has the ability to target
various genes, which involve various significant signaling pathway in cancer cells, to control cancer development and
progression. As a result, manipulating miRNA expression levels for cancer therapy seems an attractive and novel
therapeutic approach. However, certain miRNAs, which possess the bi-directional roles, could promote cancer cells
growth, but also enhance T-cell immunity. Therefore, miRNA-based therapy could also kill T cells and other lymphocytes,
ultimately resulting in promoting cancer growth, which makes miRNA-based cancer therapy process with caution. In this
view, we will focus on these miRNAs with the bi-directional roles, and discuss their potential effects to cancer therapy.
Ultimately, identified and dissected the miRNAs crossing both T-cell-mediated anti-tumor immunity and tumor cell
growth will prove vital for the design of more effective and safer strategies for cancer therapy.
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Introduction

MicroRNAs (miRNAs, miRs) are short (approximately 22
nucleotides), non-coding regulatory RNAs and post-tran-
scriptionally regulate gene’s expression by binding to the
3'-untranslated region (UTR) of complementary target
mRNA, causing either mRNA translation inhibition or
mRNA instability [1, 2]. As crucial modulators, miRNAs
participate in various biological processes such as develop-
ment, differentiation, proliferation and survival, and
distorted miRNAs expression and regulation has been
implicated in many diverse pathologies especially in cancer
[1, 3]. The vast majority of miRNAs are deregulated in most,
if not all, cancers, for example, lung cancer, breast cancer
and colorectal carcinoma and so on [4-7]. Based on their
functional activities, many of these miRNAs are divided in
two groups: oncogenic miRNAs (oncomiRs) or tumor-supp
ressive miRNAs [8]. Generally, oncomiRs are overexpressed
in neoplastic or cancerous lesions, leading to down-regulat-
ing their target mRNA with an anti-cancer role such as the
miR-17-92 [9]. Tumor-suppressor miRNAs, by contrast, are
under-expressed in cancers; an example of this is the
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miR-34 family in colorectal cancer, targeting e.g. FGFR1,
INHBB and AXL [10]. When oncomiRs or tumor-suppres-
sor miRNAs are inhibited or over-expressed, respectively,
cancer cell phenotype (proliferation, metastasis, drug resist-
ance and /or survival) may be markedly reduced. Mounting
evidences have revealed that suppression of oncomiRs
could inhibit cancer development and progression [11].
Thus, miRNAs have become one of the most attractive and
promising targets for therapeutic intervention in cancer
today.

However, miRs also play a significant role in innate and
adaptive immune responses. Our immune system has
evolved to Kkill altered-self cells with high specificity
throughout the whole body, and T-cell-mediated immune
responses controls cancer immunosurveillance and cancer
elimination [12]. Several studies have demonstrated that
various levels of T-cell immunity are regulated by specific
miRNAs [13, 14]. These miRNAs participate in generic cell
biological processes in T-cell’s response to different signals,
such as proliferation, differentiation and function. Interest-
ingly, recent studies reveal that both T-cell activation and
cancer development may share some miRNAs [15, 16].
Hence certain miRNAs have been shown to be oncogenic
in most cancers, but also display the function of tumor
elimination by regulating T-cell-mediated anti-tumor
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immune response [17, 18]. As a result, targeting miRNA
strategy deployed to inhibit cancer cell growth often elimi-
nates T cells and other lymphocytes. Reversely, the ap-
proaches aimed to activate T cells by delivering miRNAs
inhibitors or mimics may ultimately turn out to promote
cancer cell proliferation in practice. The fact that the
bi-directional roles of miRNAs is not a surprise due to the
large number of genes modulated by a particular miRNA
[19, 20]. Therefore, focusing only tumor cell growth and ig-
noring their effects on T-cell proliferation and function
when miRNAs as cancer therapeutics may represent an
oversimplification that must be scrutinized in all cancer
related miRNAs therapy studies with care. To date, this
issue has been ignored, and few studies have directly tested
its potential causes.

Cancer progression is not solely a function of the cancer
cells themselves, but also of the cellular components and
physical factors within the tumor microenvironment
(TEM), leading to evading T-cell mediated immune sur-
veillance and elimination [8]. In addition, miRNAs may
have significantly influences on T-cell proliferation and
function. Hence, it is necessary to consider the influence of
miRNAs to both T cells and cancer cells themselves when
testing miRNAs from a therapeutic standpoint. This view
should take into account the bi-directional roles of miR-
NAs in both tumor cells and T cells in cancer therapy, not
just the effects of the miRNAs that are specific to the can-
cer cells themselves. Here, we present several examples of
when a miRNA exerts an oncogenic or tumor suppressive
effect on the cancer cells themselves but an anti-cancer or
pro-cancer effect by regulating T-cell-mediated anti-tumor
immune response, or vice versa (summarized in Fig. 1).

Bi-directional roles of miRNAs in cancer cells and T cells
MiRNA-21

As the most prominent example of a miRNA that could
as either an oncomiR in cancer cell themselves or a
tumor suppressor via regulating T cells proliferation and

T cell-mediated
anti-tumor immunty
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Fig. 1 Examples of miRNAs that have the bi-directional roles in
cancer therapy. miRNAs inhibition or overexpression may promote
cancer cells growth, but also enhance T-cell immunity. Green arrows,
positive regulation; red arrows, negative regulation
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activation, we consider miR-21. As one of the first iden-
tified oncomiRs, miR-21 has been shown to be the most
generally over-expressed miRNA in the vast majority of
solid and hematological malignancies [21]. Extensive
studies have implicated the integral role of miR-21 in
tumor pathogenesis and during all other stages of car-
cinogenesis, as follows: i) down-regulation of miR-21 in
glioblastoma cells could induce caspases activation and
promote apoptosis, which shows that miR-21 can serve
as an anti-apoptotic factor [22]. ii) In response to mouse
skin carcinogenesis protocol, absence of miR-21 in mice
showed a marked decrease in papilloma formation, and
overexpression of miR-21 in vivo leads to a pre-B malignant
lymphoid-like phenotype and promotes Kras-mediated lung
tumorigenesis [23-25]. iii) Metastasis is a key factor of
cancer-related death, knock down of miR-21 in B16 cells
result in decreasing extravasation and distal metastasis, and
the survival rate of the mice tail-vein injected with
miR-21""~ B16 cells was markedly enhanced, suggesting
that miR-21 acts as an pro-metastatic factor [26]. iv): Drug
resistance is a major clinical obstacle to the successful
treatment of cancer. Prior studies have shown that over-ex-
pression of miR-21 leads to chemoresistance in several can-
cer types, such as breast and ovarian cancer [7, 27]. v):
knock down of miR-21 in hepatocellular carcinoma cells
could reduce tumor cell proliferation, migration, and cell
cycle [28]. The oncogenic activity of miR-21 may be recon-
ciled by taking into account the fact that each miRNA has
the capacity of targeting tens to hundreds of different genes.
In the case of miR-21, targets include mRNA encoding
anti-apoptotic factors (BCL-2, TIMP3, FASL, BMPR2,
PDCD4 and PTEN), Pro-proliferative factors (PTEN, SPR
Y1/2, TGFBR2 and HNRPK), invasion and metastasis
promoters (PPARA, TPM1, TIMP3 and MARCKS), and
pro-angiogenesis factors (TIMP3 and RECK) [29]. There-
fore, several studies have been showed that miR-21 may act
as a novel therapeutic target for human cancer, and inhibit-
ing miR-21 in cancer cells has achieved some success.
However, miR-21 also plays a major role in regulating
T-cell immunity. MiR-21 expression is induced during T
cell proliferation and function [30]. MiR-21 inhibits
apoptosis in activated T cells in part via targeting tumor
suppressor gene Tipe2, and also regulates T lymphocyte
activation by increasing IL-2, Rab34 and Tril expression
[31, 32]. Further supporting the function of miR-21 in T
cells activation is that miRNA-21 depletion impaired
T-cell-mediated immune response to stimulations [33].
In addition, an analogous role for miR-21 was found for
tumor-associated T cells. MiR-21~"~ mice could acceler-
ated the grafted tumor growth via slowing both CD4*
and CD8" cells proliferation as well as reducing their
cytokine production. Although deletion of miR-21 in
cancer cells could significantly retard cancer growth
[34], systematic injection of anti-miR-21 oligonucleotides
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did not show marked inhibition of the anti-cancer ability in
the tumor-bearing animals, possible because miR-21 inhib-
ition in cancer cells was compensated by the reduction of
the activity of the T cell-mediated anti-cancer immune re-
sponse by the anti-miR-21 strategy [15]. Together, these
studies clearly demonstrated that the importance of consid-
ering miR-21’s role in tumor-infiltrating T cells when
designing miR-21-based therapeutics.

MiRNA-155
Another typical example of this phenomenon is provided
by miR-155. Similar to miR-21, miR-155 is commonly
over-expressed in a large number of solid and hematologi-
cal malignancies, and has been involved in the development
of leukemia, colon and prostate cancer [35-38].
Over-expression of miR-155 in B cells in mice could in-
duce a preleukemic pre-B cell proliferation and ultimately
lead to a frank B cell malignancy [39]. Some of targets
(TP53INP, SOCS1, CEBPB and APC) of miR-155 control
apoptosis, proliferation, cell cycle progression, invasion,
migration and stemness [40]. In addition, miR-155 overex-
pression is also involved in genome instability and drug re-
sistance, for example, miR-155 overexpression could
increase mutation and enhance genomic instability by tar-
geting MLH1 and MSH2/6 via affecting multiple DNA re-
pair pathways [41], as well as down-regulation of miR-155
successfully resensitizes tumors to multiple chemothera-
peutic agents in an orthotropic lung cancer model [42].
Meanwhile, silence of miR-155 was also successfully used
in miR-155 overexpressed lymphomas treatment [43].
However, there is an interesting overlap that miR-155 is
considered as an oncomiR, but also plays important roles
in anti-cancer immune response [44]. MiR-155 is associated
with Th1/Th2 differentiation. Up-regulation of miR-155 in
naive CD4" T cells leads to polarized differentiation prefer-
entially into Th1 cells by targeting the IFN-y receptor alpha
chain (IFNGR1). Reversely, CD4" T cells lacking miR-155
were more prone to polarize towards Th2 cells, as well as
decrease IFN-y and IL-2 secretion upon antigenic stimuli
[45-47]. In addition, miR-155 also targets CTLA-4
(cytotoxic T-lymphocyte antigen-4), a negative regulator of
T-cell activation, suggesting that a second, independent
pathway via miR-155 enhancing T cell activation [48]. Also,
absence of miR-155 could weaken T cell trafficking and
antiviral CD8" T cell responses [49-52]. These studies
implies that deletion of miR-155 in tumor-associated T cells
might inhibit anti-cancer immune response and promote
rather than retard tumor growth. This notion is supported
by the fact that miR-155"" CD8" T cells were ineffective at
inhibiting tumor growth [17]. Based on the effects on T-cell
immunity and cancer cells themselves, the use of anti-
miR-155 as a cancer therapeutic approach should proceed
with caution.
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miR-17-92

Other example of miRNAs that may have the bi-directional
roles of miRNAs in cancer cells and T cells are miR-17-92.
MiR-17-92 have been identified to be up-regulated in vari-
ous cancers, such as breast cancer, colon cancer and gastric
cancer, enhances proliferation, inhibit apoptosis, and confer
pro-metastasis function in cancers, thereby promoting
cancer-progression [9, 53-55]. However, several studies
have demonstrated that the miR-17-92 cluster promoted
polarization towards a type 1 phenotype, for example,
miR-19b and miR-17 were crucial in enhancing Thl
responses and inhibiting differentiation into inducible Tregs
(regulatory T cells) by down-regulating their target genes,
such as PTEN (miR-19b), TGFBRII and CREB1 (both
miR-17) [56-58]. In addition, miR-17-92 is also up-regu-
lated in CD8" T cells, could promote IFN-y secretion, and
enhance cytotoxicity in response to stimulation. Also,
miR-17-92 increases the frequency of CD8" memory
T-cells produce IFN-y, as well as resists TGF-p-mediated
suppression [59, 60]. In a word, these results emphasize the
great complexity of the miRNA’s function in tumor
therapy.

Other miRNAs

Other miRNAs such as miR-139 and miR-342, have also
similar roles in both cancer cells and T cells. Both miRNAs
could target several oncogenes and are classified as tumor
suppressor in various cancers [61-63]. However, miR-139
and miR-342 inhibition could boost T cell cytotoxicity by
down-regulating perforin and EOMES expression [64].
Thus, testing a miRNA’s effect on both T-cell immunity
and cancer cells themselves may be of the utmost import-
ance when development a miRNA-based therapeutic
agents for cancer.

The effect on cancer therapy of their bi-directional roles

As a novel therapeutic option, regulatory miRNAs to re-
tard cancer development and progression even eliminate
cancer are attracting more and more attention [65]. How-
ever, their bi-directional roles may be an obstacle for
miRNA-based therapies to clinical treatment. Restoring
miRNA function using a synthetic miRNA (for tumor sup-
pressor miRNAs) or suppressing the activity of a miRNA
by anti-miRNA oligonucleotides (for oncogenic miRNAs)
could inhibit cancer cells proliferation, metastases and so
on, but they could also affect the anti-tumor function of
immune cells especially T cells, in tumor microenviron-
ment. Hence delivering miRNA mimics or anti-miRNAs
into cancer tissues may not exert their anti-tumor effect,
possible because miRNAs suppression or over-expression
in tumor cells to retard tumor growth is neutralized by the
inhibition of the function of the T cell-medicated
anti-tumor immunity by the targeting miRNAs strategy,
for example, anti-miR-21 approach [15]. To overcome the
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barrier, efforts should be made to develop novel and specif-
ically targeted systems to tumor cells to avoid the influence
of miRNAs to T cell-medicated anti-tumor immunity [66].
In addition, manipulating miRNAs for T cells to im-
prove the anti-tumor activity of adoptively transferred
tumor-reactive T cells should be a more promising
approach for miRNA-based cancer therapies. It has been
proved to be effective that T cells could be isolated,
treated with miRNAs mimics or anti-miRNAs oligonu-
cleotides and then reintroduced into tumor-bearing
animals [67]. MiRNAs could improve adoptive T cell im-
munotherapy from the following aspects: (1) boosting
TCR sensitivity, some miRNAs could regulates TCR sig-
naling by targeting key inhibitory phosphatases (DUSP10
or PTPN2) to promote T cell activation such as miR-21
and miR-155 [14]; (2) enhancing T cell fitness, overex-
pressing miR-17~92 in anti-EGFRVIII CAR-modified T
cells could enhance their anti-tumor activity [68]; (3)
augmenting effector functions, miR-139 and miR-342
inhibition could promote T cell effector functions [64].

Conclusions

Adoptive cell transfer (ACT)-based immunotherapy, espe-
cially microRNA-based redirected tumor-reactive T cells,
has shown promise as a potentially curative means for pa-
tients with advanced cancer. Although some miRNAs
(miR-21 and miR-155 and so on) have dual roles in tumor
progression, they are also key regulators of T cell activation,
proliferation and effector functions, which are all important
factors involving the therapeutic outcome of ACT-based
immunotherapy. Meanwhile, miRNA-based therapy offers
some advantages over other gene engineering strategies
and protein-target-based immune modulation, for example,
miRNAs could target multiple molecules simultaneously,
and manipulating a single miRNA could rebuild T cell be-
havior and bypass the need for complex transcriptional re-
program. Lastly, due to their small size, miRNA mimics
and inhibitors could be easily integrated into existing multi-
cistronic TCR and CAR platforms. Therefore, a further un-
derstanding of the role that miRNAs play in T cell fate and
behavior is driving us closer to the prospect of safe and
effective miRNA-based redirected T cell therapies.

In addition, the complexity of cancer development and
progression make development a cancer therapeutic
approach need to think about the effects to both cancer
cells and tumor-associated T cells, especially miRNA-
modulating therapies. Targeting miRNAs could simultan-
eously effect on many genes expression and even certain
key signaling pathways, which participate in both T-cell
proliferation and cancer development, such as NF-kB and
Akt pathways. Hence, this phenomenon is really possible
that miRNA-based therapy ultimately results in promoting
cancer growth. Depending on the balance between modula-
tion of miRNAs in cancer cells and the effects of the
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miRNAs on T-cell-mediated anti-cancer immunity, the
miRNAs may produce an overall net anti-cancer or net
pro-cancer effects. Preclinical trials show lots of miRNAs
with significantly potential in cancer therapy, but these data
are mainly from miRNAs-modulated tumor cells using in
vitro and immunocompromised xenograft models, and
eliminate the effects of miRNAs to T-cell-mediated anti-
cancer immune response. To then end, we strongly recom-
mend the use of immunocompetent mouse models in
preclinical trials of potential miRNA therapeutics to give
consideration to our body immune system and cancer cells
themselves. Therefore, identified and dissected the miRNAs
crossing both T-cell immunity and cancer cell growth is of
the utmost importance, as there is currently plenty of
excitement in the administration of exogenous miRNAs
mimics and miRNAs inhibitors for controlling cancer
growth. Such studies may be necessary and urgent in
driving miRNA-based therapeutics from preclinical trials to
clinical practice.
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