Skip to main content

Implications of microRNA in kidney metabolic disorders


The kidney requires large amount of energy to regulate the balance of fluid, electrolytes and acid-base homeostasis. Mitochondria provide indispensible energy to drive these functions. Diverse energy sources such as fatty acid and glucose are fueled for ATP production at different renal sites controlled by a fine-tuned regulation mechanism. microRNAs (miRNAs) have been implicated in the pathogenesis of various kidney diseases. Recent studies have highlighted their contributions to metabolic abnormalities. Characterization of the miRNAs in renal metabolic disorders may promote a better understanding of the molecular mechanism of these diseases and potentially serve as therapeutic targets.


The kidney requires a large amount of energy to enable the reabsorption of nutrients and regulation of electrolytes, fluid and acid-base balance. Maintenance of metabolic homeostasis is critical to functioning of the kidney and possibly requires a fine-tuned regulation mechanism. Global analysis has demonstrated that various metabolic disorders are corrected with the alternation of microRNA (miRNA) expression profile, suggesting vital roles of miRNAs in maintaining organ energy homeostasis.

miRNAs are small non-coding RNAs of ~ 22 nucleotides that regulate gene expression at the post-transcriptional level. miRNA is transcribed from intergenic, intronic or polycistronic loci as precursor RNAs (pri-miRNA) in canonical biogenesis pathway [1]. The stem-loop structure from the pri-miRNA is processed by Drosha and DGCR8 or the nuclear spliceosome apparatus. As an alternative way, miRNAs are non-canonically transcribed as endogenous short hairpin RNAs (shRNAs) or derive through splicing from introns (mirtrons) [2]. Then the pre-miRNA are transported to the cytosol by exportin-5 and Ran-GTP-dependent processes and are further processed by complex of RNase III, Dicer and TRBP to form the mature miRNA. miRNA duplex is then unwind by argonaut proteins (Ago2) and incorporates into the argonaut-containing RNA-induced silencing complex (RISC). The RISC-miRNA assembly is then guided to specific target sequences in mRNAs chiefly located in the 3’UTR by Watson-Crick base-pairing of nucleotides 2–8 in the mature miRNA, also called the seed sequence [3].

In this review, we briefly introduce the metabolic feature of the kidney and then discuss the advances in understanding the emerging roles of miRNAs in modulating metabolic disorders, particularly on mitochondrial homeostasis, lipid and glucose metabolism.

Metabolic characterizations of the kidney

The kidney functions to remove waste and regulate fluid and electrolyte balance. The active reabsorption of glucose, sodium and other metabolites from glomerular filtrate is a power task [4,5,6] that makes the kidney one of the most energy-demanding organ and the highest resting metabolic rates in our body [7]. To provide sufficient energy, the kidney is equipped with the highest mitochondrial content and consumes most of the oxygen only secondary to the heart [8, 9]. Moreover, the proximal convoluted tubular cells and the thick ascending loop of Henle (TAL) cells in the kidney cortex contain the majority of the renal mitochondria [10,11,12,13,14] which use the majority of kidney consumed oxygen to generate ATP [4,5,6].

In healthy conditions, large quantities of the renal ATP are produced within the mitochondria via oxidative phosphorylation (OXPHOS) [5, 14, 15]. Electrons from NADH and FADH2 produced by tricarboxylic acid (TCA) cycle are transferred to complex I and complex II, respectively and then through complex III to complex IV to be accepted by oxygen. Concurrently, protons are pumped across the membrane through complexes I, III and IV, and ultimately, flow through complex V (ATP synthase) to drive the production of ATP from ADP.

Different renal sites have diverse fuel preference (Table 1). The tubulointerstitial compartment except the glomeruli, utilize free fatty acid (FFA) via β-oxidation and ketone oxidation for ATP generation [16]. Glucose oxidation is preferred in the TAL and the glomerular cells. Whereas, glucose anaerobic metabolism occurs in the more hypoxic renal medulla [17]. Aerobic metabolism of a single molecule of glucose produces 36 molecules of ATP which is more efficient than the production of 2 molecules of ATP by anaerobic metabolism [17]. The FFA oxidation, such as a molecule of palmitic acid produces 106 molecules of ATP, is even more efficient [17]. It is worth note that proximal tubular cells (PTCs) produce glucose from lactate, glutamate and glycerol via gluconeogenesis [18, 19] that also require ATP [20, 21]. The ATP is also required for glomerular filtration and for the synthesis of hormone and proteins, although ATP for these processes are much lower than the reabsorption [7]. The fuel preferences tend to reflect the energy demands at different renal sites in the physiological conditions. The ATP production and energy source is actually flexible. Glomerular cells, including podocytes, endothelial cells and mesengial cells have the ability of aerobic and anaerobic respiration in basal cell processes [22,23,24,25]. In the absence of glucose, amino acid can be alternatively utilized to generate pyruvate to fuel glycolysis and OXPHOS [26, 27] (Fig. 1).

Table 1 Fuel preference for energy production in different segment of the kidney under physiologic and challenged conditions
Fig. 1
figure 1

Oxidation of the substrates for energy production in renal mitochondria. Free fatty acids, ketones, glucose, lactate and glutamine are renal cell fuels. They are used for mitochondrial ATP production through the TCA cycle and OXPHOS. ANT, adenine nucleotide translocase; CPT1, carnitine palmitoyltransferase 1; CPT2, carnitine palmitoyltransferase 2; GAT, mitochondrial glutamate transporter; MPC, mitochondrial pyruvate carrier

Taken together, many renal cells have high metabolic rates and are highly dependent on mitochondrial generation of ATP to maintain their physiological morphology and functions.

miRNA regulates lipid metabolism

Fatty acid is one of the major energy sources of the kidney similarly to the heart [16, 28]. The key components of fatty acid oxidation are targets of various miRNAs. Carnitine palmitoyltransferase 1α (CPT1α) mediates the entrance of fatty acid to mitochondria [29], which has been shown to be targeted by miR-33 family [30, 31] and miR-370 [32]. miR-142 targets CPT1α to regulate metabolic reprogramming during immunogenic response [33].

Carnitine ctanoyl transferase (CROT) is a peroxisomal enzyme that allows short chain fatty acid to enter into the mitochondria [29]. miR-33a, miR-33b and the complementary strand miR-33a-3p has been found to target CROT and therefore affect fatty acid β oxidation [30, 31, 34]. Moreover, the intronic region of sterol-regulatory element binding proteins (SREBP2) [35] and SREBP1 [36] genes encode miR-33a and miR-33b, which also targets the 3-ketoacyl-coA thiolase to regulate fatty acid oxidation [31]. In addition, miR-33a and miR-33b was found to target sirtuin SIRT6 [37], a NAD+-dependent histone deacetylase [38,39,40,41]. miR-33 inhibits SIRT6 and leads to acetylation of SREBP1 targeted acetyl-coA carboxylase 1 (ACC1), stearoyl-coA desaturase 1 and fatty acid synthase (FASN), which results in repression of lipogenesis [31].

miR-122 antisense significantly reduces plasma cholesterol level [42, 43]. Transfecting of miR-122 reduces the transcription of aldolase-A in hepatocarcinoma cell line [42]. Pantothenate kinase 1 (PANK) is involved in the synthesis of coenzyme A, which is a cofactor in lipid metabolism [44]. In the intronic sequence of the PANK1α gene locates the miR-103 and miR-107 which affects lipid metabolism [45]. miR-224 targets acyl-coA synthetase long chain family (ACSL4) [45] and alters fatty acid oxidation [46].

Gene expression profiling identifies the upregulation of a group of lipid metabolic genes in the absence of miR-21, including the direct target of miR-21, peroxisome proliferator activated receptor α (PPARα) [47]. miR-21 promotes renal fibrosis by targeting PPARα and Mpv171 to silence lipid metabolic pathway and aggravates ROS generation, respectively [47]. Moreover, miR-21 silencing enhances PPARα/retinoid X receptor and the downstream pathways that protects mitochondrial function and relieves inflammation and fibrogenesis in renal tubule and glomeruli [48]. miR-17 is identified as a novel target for treatment of autosomal dominant polycystic kidney disease (ADPKD), which is the downstream of c-myc and inhibit OXPHOS and stimulate proliferation to aggravate cyst growth via directly repress of PPARα [49]. Similarly, miR-105 regulates the sustained cell growth by targeting MYC [50].

PPARδ mediates the metabolic switch from fatty acid oxidation to glycolysis [51]. miR-199a targets PPARδ to increase lipid accumulation and affects mitochondrial content in heart and liver [52]. PPARδ is also the target of miR-29a [53].

AMP-dependent kinase (AMPK) signaling and insulin receptor signaling pathways are critical cellular energy pathways such as lipid and glucose metabolism [54]. AMPKα1 is targeted by miR-33a and miR-33b [37, 55], which mediates the inhibition of SREBP or phosphorylation and deactivation of SREBP-targeted ACC1 [56, 57]. The insulin receptor substrate 2 (IRS2), one of the adaptor proteins that relays insulin receptor signaling to the downstream effectors, is also the target of miR-33 [37]. Reduced IRS2 and compensatory elevation of IRS1 activates SREBP1 [58], which explains the effect of miR-33 on lipid deposition and hepatosteatosis.

In summary, these results suggest an integrated and extensive interaction between the targets and their miRNAs to regulate lipid metabolism (Fig. 2).

Fig. 2
figure 2

miRNA regulation of lipid metabolism. A schematic of miRNA-regulatory network in lipid metabolism. ACSL4, acyl-coA synthetase long chain 4; AMPKα1, AMP-dependent kinase α1; CPT1α, carnitine palmitoyltransferase 1α; CROT, carnitine ctanoyl transferase; IRS, insulin receptor substrate; PANK, pantothenate kinase; PPAR, peroxisome proliferator activated receptor; SREBP, sterol-regulatory element binding proteins

miRNA modulates glucose metabolism and glycolysis related signaling pathways

Several miRNAs regulates the tissue responses to insulin and glucose metabolism. In diabetes, miR-29a and miR-29b are upregulated in muscle and liver [59], which repress insulin signaling stimulation protein caveolin 2 (CAV2) [60, 61], SREBP negative regulator insulin-induced gene 1 (INSIG1) and insulin intermediate PI3 kinase subunit p85α [59]. miR-126 targets IRS1 to induce insulin signaling inhibition [62]. miR-223 inhibit glucose uptake in skeletal muscle by targeting glucose transporter GLUT4 [63]. miR-103 and miR-107 are probably therapeutic targets for relieving insulin resistance [64]. They affect the availability of insulin receptor by targeting CAV1 [65]. Interestingly, miR-103 and miR-107 are inhibitors of Dicer and their effects are also presumably mediated via other miRNAs [66]. miR-143 is high in diabetic db/db mice and contributes to the reduced insulin signaling sensitivity possibly by targeting Akt related oxysterol-binding protein-related 8 (ORP8) [67]. let-7 miRNA family, also increased in diabetic mice probably results in impaired insulin signaling through targeting insulin-like growth factor 1 receptor (IGF1R) and IRS2 [68].

In proliferative cells such as tumor, several miRNAs have been found to directly target enzymes and transporters involved in the process of glycolysis. Downregulation of miR-106a results in de-repression of GLUT3 and promotes glycolysis [21, 69, 70]. Similarly, downregulation of miR-195-5p leads to de-repression of its target GLUT3 and increases the uptake of glucose in bladder cancer [71]. miR-144 targets GLUT1 which results in reduced glucose uptake and lactate production in lung cancer cells [72]. GLUT1 is also the target of miR-1291 and miR-328 in renal cell carcinoma [73] and colon cancer cell [74], respectively.

The glycolytic enzyme hexokinase 2 (HK2) is the direct target of miR-143 [75]. In addition, HK2 is indirectly regulated by miR-124 and miR-155 both via STAT3 [76, 77]. miR-128, miR-135 and miR-320 target phosphofructokinase (PFK) which is downregulated in lung cancer [78,79,80]. SIRT2 specifically targeted by miR-200c is a critical regulator of several glycolytic enzymes, including aldolase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and enolase [81].

Pyruvate kinase type M2 (PKM2) is targeted by let-7a [82]. Moreover, c-Myc targeted by let-7, is also the activator of hetergenous nucler ribonucleoprotein A1 (hnRNPA1) splicing factor, which in turn downregulates let-7 and forms a positive feedback loop consisting of let-7a/c-Myc/hnRNPA1/PKM2 [82]. PKM2 is also the target of miR-326 in regulation of cell proliferation [83]. PKM2 is targeted by miR133a/b in tongue squamouse cell carcinoma [84,85,86]. The PKM2 targeted by miR-122 is shown to induce metabolic switch from glycolysis to OXPHOS [87]. miR-340, miR-124 and miR-137 target the alternative splicing proteins hnRNPI/hnRNPA1/hnRNPA2, which make the PK PKM2 [88]. miR-26a targets pyruvate dehydrogenase protein X (PDHX) to promote glycolysis and repress OXPHOS [89].

miR-34 targets lactate dehydrogenase A (LDHA) and is also reduced in breast cancer [90, 91]. LDHB is the target of miR-375 [92,93,94]. miR-124 and miR-342-3p target lactate monocarboxylate transporter 1 (MCT1) to inhibit the transport of lactate from cytosol to extracellular space [95, 96].

Besides insulin receptor signaling, glycolytic metabolism is also regulated by receptor tyrosine kinases (RTKs) and the downstream effecter pathways, including c-Met, platelet-derived growth factor receptor α (PDGFRA), epidermal growth factor receptor (EGFR), RAS pathway, PI3K/Akt, mTOR and c-myc. c-Met is targeted by miR-410 [97], miR-144-3p [98], and miR-34a [99,100,101,102]. In addition, miR-34a also targets PDGFRA [102]. miR-128 targets PDGFRA and EGFR [103]. Furthermore, EGFR is the target of miR-219-5p [104, 105] and miR-7 [106, 107].

miR-9-targeted NF1 is the antagonist of RAS [108]. N-RAS is the target of miR-143 [109] and miR-340 [110, 111]. K-RAS is targeted by let-7a [112] and miR-134 [113]. Most of the miRNAs are aforementioned as glycolytic targeting miRNAs, suggesting a strong correlation between RAS and glycolysis.

Activation of PI3K/Akt pathway contributes to the enhanced glycolysis. miR-7 directly targets PI3K [114]. The downstream Akt is targeted by miR-542-3p [115]. miR-21 indirectly regulates PI3K through targeting its antagonist PTEN [116]. Moreover, PTEN is the target of miR-26a [117], miR-1908 [118], miR-494-3p [119], miR-10a/b [120], and miR-21/221 [121, 122].

The PI3K/Akt downstream pathway mTORC1 is the promoter for glycolysis and negatively regulated by AMPK. mTORC1 is indirectly regulated by miR-451 via targeting CAB39, which binds the AMPK activator LKB1 [123, 124]. miR-199a-3p targets mTORC1 and mTORC2 [125]. miR-34a suppresses Rictor, which is the binding partner of mTORC2 [101, 126].

c-Myc is regulated by mTORC2 via FoxO3a and is directly targeted by miR-34c [127]. Interestingly, FoxO3a positively regulates miR-34c [127]. On the contrary, FoxO3a is the target of miR-155 [128].

In conclusion, multiple miRNAs have been shown to affect glucose homeostasis (Fig. 3) and insulin signaling pathway (Fig. 4). The regulatory loops composed of miRNA/glycolysis related signaling pathways/glycolysis are possibly universal in proliferative cells.

Fig. 3
figure 3

miRNA regulation of glycolytic enzymes and transporters. A schematic of miRNA-regulatory network in glycolysis. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter; HK2, hexokinase 2; hnRNPA, hetergenous nucler ribonucleoprotein A; PDHX, pyruvate dehydrogenase protein X; PFK, phosphofructokinase; PGK, phosphoglycerate kinase; PKM2, pyruvate kinase type M2; LDH, lactate dehydrogenase; MCT1, monocarboxylate transporter 1

Fig. 4
figure 4

miRNA regulation of glycolysis related signaling pathways. A schematic of miRNA-regulatory network in glycolytic signaling pathways. AMPK, AMP-dependent kinase; CAV, caveolin; EGFR, epidermal growth factor receptor; IGF1R, insulin-like growth factor 1 receptor; INSIG1, insulin-induced gene 1; ORP8, oxysterol-binding protein-related 8; PDGFRA, platelet-derived growth factor receptor α

miRNA in amino acid metabolism

Synthesis and breakdown of amino acid are mainly occurs within the mitochondria. The amino acid is also the energy source of renal tubular cells [16]. Previous studies have shown that amino acid metabolism is regulated by multiple miRNAs. miR-193b regulates serine hydroxyl transferase (SHMT2), which converts serine to glycine [129]. miR-23a and miR-23b have been implicated in proliferative cells to control the expression of glutaminase in mitochondria [130]. Interestingly, their downregulation following c-myc overexpression is also observed during sustained cell proliferation and transformation [130]. The target of miR-29b, digydrolipoyl branched chain acyltransferase is one of the components of branched chain α-ketoacid degydrogenase, which mediates the catabolism of leucin, isoleucine and valine [131].

miRNA modulates the mitochondrial homeostasis

mitomiRs and mitochondria

miRNAs that locate inside the mitochondria are termed mitomiRs, either encoded by the mitochondrial genome or transported into the organelle [132, 133]. miRNAs are not expressed in cells without mitochondrial DNA (mtDNA) suggests that human and mouse mitochondrial genome could encode miRNAs [134]. Moreover, the presence of pre-miR and the corresponding mature miRNAs in mitochondria suggests that miRNA processing may occur in the mitochondria. It is possible that nuclear-encoded miRNAs may be imported into mitochondria [133, 135, 136] where to regulate mtDNA translation [135]. MitomiRs have distinguishable characteristics that separate them from cytosolic miRNA, such as an unusual size between 17 and 25 nt and unique thermodynamic features, which are speculated to facilitate their entry to mitochondria [136]. Multiple putative mitomiR binding sites were revealed on the mtDNA in silico studies [133]; however, evidence showing the import of miRNA into mitochondria is still lacking. Isolation of mitochondria without the contamination of other membrane vesicles remains the major technical obstacle and interpretation of the data should be taken with caution. Whether mitochondria-produced miRNA can be exported to the cytoplasm is still controversial. The mitochondrial-like transcripts probably come from mitochondrial genome equivalents within the nuclear genome [137,138,139].

Evidence of mitomiRs in renal cells remains poorly noticed. The muscle-specific miR-1 enhances mtDNA-encoded transcripts inside the mitochondria of cardiac and skeletal muscle [135]; however, the direct evidence showing the binding of miR-1 to mitochondrial transcripts was lacking. It is also interesting because the translational stimulation effect of miRNAs was merely reported previously. The rat cardiac-specific mitomiR, miR-181c is enriched 2-fold in mitochondria compared to the whole heart, which targets the mRNA of cytochrome c oxidase subunit I (COX1) and regulates mitochondrial respiration [140]. In addition, administration of miR-181c regulates mitochondrial genes and leads to cardiac dysfunction [141]. More reports indicate the role of miR-181a in regulation of mitochondrial apoptosis pathway [142]. In cisplatin-induced acute kidney injury (AKI), repression of mitochondrial resident protein Bcl-1 by miR-181 leads to proximal tubular cells injury [143]. Recent research reveals a panel of aging-related mitomiRs (let7b, miR-146a, −133b, −106a, −19b, −20a, −34a, −181a and − 221) targets a number of mitochondrial resident proteins besides Bcl-1 [144]. miR-378 binds to the mitochondrial transcriptome locus of ATP6, which is a subunit of the F0 complex of the complex V (ATP synthase) and finally impacts ATP generation [145]. During the process of skeletal muscle maturation, miR-1/133a targets the Mef2A/Dik1-Dio3 gene cluster and modulates the expression of multiple miRNAs which then suppress the mitochondrial genes [146].

Conformation of the existence of mitomiRs in the kidney tissue and exploration of their pathophysiologic functions will be of great interest and promising.

Canonical miRNA and mitochondria

It is shown that a couple of canonical miRNAs regulates mitochondrial functions including TCA, OXPHOS via mechanisms in the cytosol. Brain-specific miRNA, miR-338 reduces nuclear genome encoded cytochrome c oxidase subunit IV (COX4), which regulates ROS level [147]. Under hypoxic conditions, miR-210 is markedly induced and directly represses OXPHOS by targeting the iron-sulfur cluster scaffold (ISCU) and cytochrome c oxidase assembly protein (COX10), which ultimately contributes to the metabolic shift from OXPHOS to glycolysis [148, 149]. Moreover, miR-210 could regulate complex II activity by targeting its subunit succinate dehydrogenase subunit D (SDHD) [150]. miR-335 and miR-34a target mitochondrial superoxide dismutase 2 (SOD2) and thioredoxin reductase 2 (TR2) and therefore regulate oxidative damage and cell senescence [151]. Increased NADPH oxidase resulted from the decrease of miR-25 in diabetic kidney causes oxidative stress in mesenchymal cells [152].

The enzyme activity of pyruvate dehydrogenase (PDH) is reduced when its subunit X is targeted by miR-26a, which leads to accumulation of pyruvate with decrease of acetyl-coA [89]. It has been reported that citrate synthase (CS) is targeted by several miRNAs, including miR-152, −148a, −148b, − 299, −19a, −19b, −122a, − 421 and − 494 [153].

miR-124 downregulates succinate coA ligase GDP forming β subunit (SUCLG2) and represses the conversion of succinate to succinyl coA [154]. Downregulation of isocitrate dehydrogenase (IDH) by miR-183 and malate dehtdrogenase (MDH) by miR-743a within the TCA cycle results in a metabolic shift toward glycolytic status [155]. The ADP-ribosylation factor-like 2 (ARL2) is a common target for miR-15b, − 16, − 195, − 424 [156], which affects mitochondrial degradation and ATP production [157].

Other miRNAs have been implicated in modulation of mitochondrial dynamics. miR-30 family member are found to regulate Drp1 by targeting p53 [158]. Notably, miR-30/p53/Drp1 limits mitochondrial fission and promotes mitochondrial fusion, which has been suggested to be particularly important in high energy demanding organs such as the cardiac tissue [158]. miR-30/p53/Drp1 axis may also prevent the loss of cells with less self-renewal capacity by the increase of threshold for apoptotic activation [158]. This might be identified in kidney tissues that have the similar physiologic features.

miR-26 promotes mitochondrial uncoupling and induces energy dissipation in brown adipocytes by increasing uncoupling protein 1 (UCP1) and leads to a slight increase of cristae density [159]. Additionally, miR-27a and miR-27b were shown to regulate mitochondrial biogenesis, structure integrity and complex I activity during adipogenesis by targeting prohibitin [160]. The miR-149/poly (ADP-ribose) polymerase-1 (PARP-1)/NAD+/SIRT-1 axis increases mitochondrial function and biogenesis through PGC-1α activation in skeletal muscle [161].

miR-378 downregulates caspase 3 and inhibits apoptosis in cardiac tissue [162]. The aforementioned miR-1 targets insulin-like growth factor (IGF), decreases mitochondrial membrane potential and leads to the release of caspase 3 [163].

In summary, increasing evidences suggest that these mitochondrial functional regulating miRNAs are possibly mitomiRs and mediate nuclear regulation of mitochondrial functions and mitochondrial retrograde cellular adaptive signals (Fig. 5).

Fig. 5
figure 5

miRNA regulation of mitochondrial function and homeostasis. A schematic of miRNA-regulatory network in mitochondrial function and homeostasis. ARL2; ADP-ribosylation factor-like 2; COX, cytochrome c oxidase; CS, citrate synthase; IDH, isocitrate dehydrogenase; δψm, mitochondrial membrane potential; IGF, insulin-like growth factor; ISCU, iron-sulfur cluster scaffold; MDH, malate dehtdrogenase; mtDNA, mitochondrial DNA; OXPHOS, oxidative phosphorylation; PARP-1, poly (ADP-ribose) polymerase-1; SDH, succinate dehydrogenase; SOD2, superoxide dismutase 2; SUCLG2, succinate coA ligase GDP forming β subunit; TCA, tricarboxylic acid; TR2, thioredoxin reductase 2

Conclusion and perspective

Thousands of miRNAs have been shown to regulate numerous aspects in human physiological and pathological conditions. As we mentioned here, a growing number of miRNAs have been implicated in regulating metabolic disorders and maintaining mitochondrial homeostasis (Table 2). This could suggest similar regulatory roles of miRNAs in kidney metabolic diseases. It is necessary to carry out functional validation studies in human and models of kidney diseases to establish such link between miRNA expressions and their regulatory role in renal metabolic disorders. Moreover, as compared to traditional medications toward several druggable targets, the potential therapeutic implications for treatment of kidney diseases by targeting the aberrant miRNAs seem exciting in the clinical perspective. However, proteins are probably regulated by plenty of miRNAs because of the multiple target sites in mRNAs. In addition, miRNAs always have many target proteins because of the similar target sequences in mRNAs. The possible off-target effect and long-term consequences of miRNA-targeted therapeutics remain unknown. These will certainly be the topics for intensive research in the near future.

Table 2 Regulation of miRNA on metabolic pathways

Availability of data and materials

Not applicable.



Acetyl-coA carboxylase


Acyl-coA synthetase long chain


Autosomal dominant polycystic kidney disease


Argonaut proteins


Acute kidney injury


AMP-dependent kinase


ADP-ribosylation factor-like 2




Cytochrome c oxidase


Carnitine palmitoyltransferase 1α


Carnitine ctanoyl transferase


Citrate synthase


Epidermal growth factor receptor


Fatty acid synthase


Free fatty acid


Glyceraldehyde-3-phosphate dehydrogenase


Glucose transporter


Hexokinase 2


Hetergenous nucler ribonucleoprotein A


Isocitrate dehydrogenase


Insulin-like growth factor


Insulin-like growth factor 1 receptor


Insulin-induced gene 1


Insulin receptor substrate


Iron-sulfur cluster scaffold


Lactate dehydrogenase


Monocarboxylate transporter 1


Malate dehtdrogenase




Mitochondrial DNA


Oxysterol-binding protein-related 8


Oxidative phosphorylation


Pantothenate kinase


Poly (ADP-ribose) polymerase-1


Platelet-derived growth factor receptor α


Pyruvate dehydrogenase


Pyruvate dehydrogenase protein X




Phosphoglycerate kinase


Pyruvate kinase type M2


Peroxisome proliferator activated receptor


Proximal tubular cells


RNA-induced silencing complex


Receptor tyrosine kinases


Succinate dehydrogenase


Serine hydroxyl transferase


Short hairpin RNAs


Superoxide dismutase 2


Sterol-regulatory element binding proteins


Succinate coA ligase GDP forming β subunit


Thick ascending loop of Henle


Tricarboxylic acid


Thioredoxin reductase 2


  1. 1.

    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Yang JS, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell. 2011;43(6):892–903.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Mandel LJ, Balaban RS. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Phys. 1981;240(5):F357–71.

    CAS  Google Scholar 

  5. 5.

    Soltoff SP. ATP and the regulation of renal cell function. Annu Rev Physiol. 1986;48:9–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Thaysen JH, Lassen NA, Munck O. Sodium transport and oxygen consumption in the mammalian kidney. Nature. 1961;190:919–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Wang Z, Ying Z, Bosy-Westphal A, Zhang J, Schautz B, Later W, Heymsfield SB, Muller MJ. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am J Clin Nutr. 2010;92(6):1369–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE, Walford GA, Sugiana C, Boneh A, Chen WK, et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell. 2008;134(1):112–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    O'Connor PM. Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol. 2006;33(10):961–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Doucet A, Katz AI, Morel F. Determination of Na-K-ATPase activity in single segments of the mammalian nephron. Am J Phys. 1979;237(2):F105–13.

    CAS  Google Scholar 

  11. 11.

    Katz AI, Doucet A, Morel F. Na-K-ATPase activity along the rabbit, rat, and mouse nephron. Am J Phys. 1979;237(2):F114–20.

    CAS  Google Scholar 

  12. 12.

    Pfaller W, Rittinger M. Quantitative morphology of the rat kidney. Int J BioChemiPhysics. 1980;12(1–2):17–22.

    CAS  Article  Google Scholar 

  13. 13.

    Hall AM, Unwin RJ, Parker N, Duchen MR. Multiphoton imaging reveals differences in mitochondrial function between nephron segments. J Am Soc Nephrol. 2009;20(6):1293–302.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Katz AI. Distribution and function of classes of ATPases along the nephron. Kidney Int. 1986;29(1):21–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Mandel LJ. Metabolic substrates, cellular energy production, and the regulation of proximal tubular transport. Annu Rev Physiol. 1985;47:85–101.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol. 2018;14(5):291–312.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Rich PR. The molecular machinery of Keilin's respiratory chain. Biochem Soc Trans. 2003;31(Pt 6):1095–105.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Perriello G, Nurjhan N, Stumvoll M, Bucci A, Welle S, Dailey G, Bier DM, Toft I, Jenssen TG, Gerich JE. Regulation of gluconeogenesis by glutamine in normal postabsorptive humans. Am J Phys. 1997;272(3 Pt 1):E437–45.

    CAS  Google Scholar 

  19. 19.

    Meyer C, Stumvoll M, Dostou J, Welle S, Haymond M, Gerich J. Renal substrate exchange and gluconeogenesis in normal postabsorptive humans. Am J Physiol Endocrinol Metab. 2002;282(2):E428–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Krebs HA, Yoshida T. Renal gluconeogenesis. 2. The Gluconeogenic capacity of the kidney cortex of various species. Biochem J. 1963;89:398–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mc CW, Jude JR. The synthesis of glucose by the kidney. Bull Johns Hopkins Hosp. 1958;103(2):77–93.

    Google Scholar 

  22. 22.

    Thomas SR. Inner medullary lactate production and accumulation: a vasa recta model. Am J Physiol Renal Physiol. 2000;279(3):F468–81.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Ross BD, Espinal J, Silva P. Glucose metabolism in renal tubular function. Kidney Int. 1986;29(1):54–67.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Chen Y, Fry BC, Layton AT. Modeling glucose metabolism and lactate production in the kidney. Math Biosci. 2017;289:116–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Guder WG, Ross BD. Enzyme distribution along the nephron. Kidney Int. 1984;26(2):101–11.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Wirthensohn G, Guder WG. Renal substrate metabolism. Physiol Rev. 1986;66(2):469–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem. 1998;180(1–2):53–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Asp Med. 2004;25(5–6):495–520.

    CAS  Article  Google Scholar 

  30. 30.

    Goedeke L, Vales-Lara FM, Fenstermaker M, Cirera-Salinas D, Chamorro-Jorganes A, Ramirez CM, Mattison JA, de Cabo R, Suarez Y, Fernandez-Hernando C. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Mol Cell Biol. 2013;33(11):2339–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of microRNA-122 and Cpt1alpha and affects lipid metabolism. J Lipid Res. 2010;51(6):1513–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Sun Y, Oravecz-Wilson K, Bridges S, McEachin R, Wu J, Kim SH, Taylor A, Zajac C, Fujiwara H. Peltier DC et al: miR-142 controls metabolic reprogramming that regulates dendritic cell activation. J Clin Invest. 2019;130:2029–42.

    Article  Google Scholar 

  34. 34.

    Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF, Leclercq IA, MacDougald OA, Bommer GT. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem. 2010;285(44):33652–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Bommer GT, MacDougald OA. Regulation of lipid homeostasis by the bifunctional SREBF2-miR33a locus. Cell Metab. 2011;13(3):241–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Xu X, So JS, Park JG, Lee AH. Transcriptional control of hepatic lipid metabolism by SREBP and ChREBP. Semin Liver Dis. 2013;33(4):301–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, et al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A. 2011;108(22):9232–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2):315–29.

    CAS  Article  Google Scholar 

  39. 39.

    Zhong L, D'Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell. 2010;140(2):280–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Xiao C, Kim HS, Lahusen T, Wang RH, Xu X, Gavrilova O, Jou W, Gius D, Deng CX. SIRT6 deficiency results in severe hypoglycemia by enhancing both basal and insulin-stimulated glucose uptake in mice. J Biol Chem. 2010;285(47):36776–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature. 2008;452(7186):492–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, R MK, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3(2):87–98.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature. 2005;438(7068):685–9.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  44. 44.

    Tomasiak TM, Cecchini G, Iverson TM. Succinate as donor; Fumarate as acceptor. EcoSal Plus. 2007;2(2).

  45. 45.

    Wilfred BR, Wang WX, Nelson PT. Energizing miRNA research: a review of the role of miRNAs in lipid metabolism, with a prediction that miR-103/107 regulates human metabolic pathways. Mol Genet Metab. 2007;91(3):209–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Peng Y, Xiang H, Chen C, Zheng R, Chai J, Peng J, Jiang S. MiR-224 impairs adipocyte early differentiation and regulates fatty acid metabolism. Int J Biochem Cell Biol. 2013;45(8):1585–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, Li J, Tran PT, Kaimal V, Huang X, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4(121):121ra118.

    Article  CAS  Google Scholar 

  48. 48.

    Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, et al. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest. 2015;125(1):141–56.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu X, Aboudehen K, Zhang S, Kersjes K, R G, et al. microRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun. 2017;8:14395.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Yan W, Wu X, Zhou W, Fong MY, Cao M, Liu J, Liu X, Chen CH, Fadare O, Pizzo DP, et al. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells. Nat Cell Biol. 2018;20(5):597–609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Burkart EM, Sambandam N, Han X, Gross RW, Courtois M, Gierasch CM, Shoghi K, Welch MJ, Kelly DP. Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest. 2007;117(12):3930–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    el Azzouzi H, Leptidis S, Dirkx E, Hoeks J, van Bree B, Brand K, McClellan EA, Poels E, Sluimer JC, van den Hoogenhof MM, et al. The hypoxia-inducible microRNA cluster miR-199a approximately 214 targets myocardial PPARdelta and impairs mitochondrial fatty acid oxidation. Cell Metab. 2013;18(3):341–54.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  53. 53.

    Kurtz CL, Peck BC, Fannin EE, Beysen C, Miao J, Landstreet SR, Ding S, Turaga V, Lund PK, Turner S, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes. Diabetes. 2014;63(9):3141–8.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Hardie DG. AMP-activated protein kinase: a cellular energy sensor with a key role in metabolic disorders and in cancer. Biochem Soc Trans. 2011;39(1):1–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011;13(4):376–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Yap F, Craddock L, Yang J. Mechanism of AMPK suppression of LXR-dependent Srebp-1c transcription. Int J Biol Sci. 2011;7(5):645–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, Yada M, Yada R, Harada N, Enjoji M, et al. SREBP-1c, regulated by the insulin and AMPK signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med. 2008;21(4):507–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    He A, Zhu L, Gupta N, Chang Y, Fang F. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol. 2007;21(11):2785–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Kim S, Pak Y. Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells. Biochem Biophys Res Commun. 2005;330(1):88–96.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK. Datta M: miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol Cell Endocrinol. 2011;332(1–2):125–33.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Ryu HS, Park SY, Ma D, Zhang J, Lee W. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One. 2011;6(3):e17343.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res. 2010;86(3):410–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  64. 64.

    Naar AM. MiRs with a sweet tooth. Cell Metab. 2011;14(2):149–50.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  65. 65.

    Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, Enzo E, Guzzardo V, Rondina M, Spruce T, et al. A MicroRNA targeting dicer for metastasis control. Cell. 2010;141(7):1195–207.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Jordan SD, Kruger M, Willmes DM, Redemann N, Wunderlich FT, Bronneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Bottger T, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol. 2011;13(4):434–46.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011;147(1):81–94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Dai DW, Lu Q, Wang LX, Zhao WY, Cao YQ, Li YN, Han GS, Liu JM, Yue ZJ. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM. BMC Cancer. 2013;13:478.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Liu Y, Li YM, Tian RF, Liu WP, Fei Z, Long QF, Wang XA, Zhang X. The expression and significance of HIF-1alpha and GLUT-3 in glioma. Brain Res. 2009;1304:149–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71.

    Fei X, Qi M, Wu B, Song Y, Wang Y, Li T. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression. FEBS Lett. 2012;586(4):392–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72.

    Liu M, Gao J, Huang Q, Jin Y, Wei Z. Downregulating microRNA-144 mediates a metabolic shift in lung cancer cells by regulating GLUT1 expression. Oncol Lett. 2016;11(6):3772–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Yamasaki T, Seki N, Yoshino H, Itesako T, Yamada Y, Tatarano S, Hidaka H, Yonezawa T, Nakagawa M, Enokida H. Tumor-suppressive microRNA-1291 directly regulates glucose transporter 1 in renal cell carcinoma. Cancer Sci. 2013;104(11):1411–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Santasusagna S, Moreno I, Navarro A, Munoz C, Martinez F, Hernandez R, Castellano JJ. Monzo M: miR-328 mediates a metabolic shift in colon cancer cells by targeting SLC2A1/GLUT1. Clin Transl Oncol. 2018;20(9):1161–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Zhao S, Liu H, Liu Y, Wu J, Wang C, Hou X, Chen X, Yang G, Zhao L, H C, et al. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells. Cancer Lett. 2013;333(2):253–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76.

    Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, Liang S, Li B, Li Y, Li D, Wang ED, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31(8):1985–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Li W, Huang H, Su J, Ji X, Zhang X, Zhang Z. Wang H: miR-124 acts as a tumor suppressor in Glioblastoma via the inhibition of signal transducer and activator of transcription 3. Mol Neurobiol. 2017;54(4):2555–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Yang J, Li J, Le Y, Zhou C, Zhang S, Gong Z. PFKL/miR-128 axis regulates glycolysis by inhibiting AKT phosphorylation and predicts poor survival in lung cancer. Am J Cancer Res. 2016;6(2):473–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Tang H, Lee M, Sharpe O, Salamone L, Noonan EJ, Hoang CD, Levine S, Robinson WH, Shrager JB. Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. FASEB J. 2012;26(11):4710–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Yang Y, Ishak Gabra MB, Hanse EA, Lowman XH, Tran TQ, Li H, Milman N, Liu J, Reid MA, Locasale JW, et al. MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat Commun. 2019;10(1):809.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Cha Y, Han MJ, Cha HJ, Zoldan J, Burkart A, Jung JH, Jang Y, Kim CH, Jeong HC, Kim BG, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19(5):445–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, Qian J, Li R, Tao T, Wei W, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 2015;6(15):13006–18.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Kefas B, Comeau L, Erdle N, Montgomery E, Amos S, Purow B. Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells. Neuro-Oncology. 2010;12(11):1102–12.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Sakr M, Takino T, Sabit H, Nakada M, Li Z. Sato H: miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene. 2016;587(2):155–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85.

    Wong TS, Liu XB, Chung-Wai Ho A, Po-Wing Yuen A, Wai-Man Ng R, Ignace Wei W. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer. 2008;123(2):251–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  86. 86.

    Chang L, Lei X, Qin YU, Zhang X, Jin H, Wang C, Wang X, Li G, Tan C, Su J. MicroRNA-133b inhibits cell migration and invasion by targeting matrix metalloproteinase 14 in glioblastoma. Oncol Lett. 2015;10(5):2781–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Liu AM, Xu Z, Shek FH, Wong KF, Lee NP, Poon RT, Chen J. Luk JM: miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma. PLoS One. 2014;9(1):e86872.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Sun Y, Zhao X, Zhou Y. Hu Y: miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncol Rep. 2012;28(4):1346–52.

    CAS  Article  PubMed  Google Scholar 

  89. 89.

    Chen B, Liu Y, Jin X, Lu W, Liu J, Xia Z, Yuan Q, Zhao X, Xu N, Liang S. MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer. 2014;14:443.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, Aittomaki K, Heikkila P, Bartek J, Blomqvist C, et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One. 2011;6(11):e26122.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Xiao X, Huang X, Ye F, Chen B, Song C, Wen J, Zhang Z, Zheng G, Tang H, Xie X. The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep. 2016;6:21735.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92.

    Isozaki Y, Hoshino I, Nohata N, Kinoshita T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N, et al. Identification of novel molecular targets regulated by tumor suppressive miR-375 induced by histone acetylation in esophageal squamous cell carcinoma. Int J Oncol. 2012;41(3):985–94.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93.

    Kinoshita T, Nohata N, Yoshino H, Hanazawa T, Kikkawa N, Fujimura L, Chiyomaru T, Kawakami K, Enokida H, Nakagawa M, et al. Tumor suppressive microRNA-375 regulates lactate dehydrogenase B in maxillary sinus squamous cell carcinoma. Int J Oncol. 2012;40(1):185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Chang C, Shi H, Wang C, Wang J, Geng N, Jiang X, Wang X. Correlation of microRNA-375 downregulation with unfavorable clinical outcome of patients with glioma. Neurosci Lett. 2012;531(2):204–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Li KK, Pang JC, Ching AK, Wong CK, Kong X, Wang Y, Zhou L, Chen Z. Ng HK: miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol. 2009;40(9):1234–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96.

    Romero-Cordoba SL, Rodriguez-Cuevas S, Bautista-Pina V, Maffuz-Aziz A, D'Ippolito E, Cosentino G, Baroni S, Iorio MV, Hidalgo-Miranda A. Loss of function of miR-342-3p results in MCT1 over-expression and contributes to oncogenic metabolic reprogramming in triple negative breast cancer. Sci Rep. 2018;8(1):12252.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Chen L, Zhang J, Feng Y, Li R, Sun X, Du W, Piao X, Wang H, Yang D, Sun Y, et al. MiR-410 regulates MET to influence the proliferation and invasion of glioma. Int J Biochem Cell Biol. 2012;44(11):1711–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98.

    Lan F, Yu H, Hu M, Xia T. Yue X: miR-144-3p exerts anti-tumor effects in glioblastoma by targeting c-met. J Neurochem. 2015;135(2):274–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  99. 99.

    Luan S, Sun L, Huang F. MicroRNA-34a: a novel tumor suppressor in p53-mutant glioma cell line U251. Arch Med Res. 2010;41(2):67–74.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  100. 100.

    Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, et al. MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res. 2009;69(19):7569–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Rathod SS, Rani SB, Khan M, Muzumdar D, Shiras A. Tumor suppressive miRNA-34a suppresses cell proliferation and tumor growth of glioma stem cells by targeting Akt and Wnt signaling pathways. FEBS Open Bio. 2014;4:485–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Silber J, Jacobsen A, Ozawa T, Harinath G, Pedraza A, Sander C, Holland EC. Huse JT: miR-34a repression in proneural malignant gliomas upregulates expression of its target PDGFRA and promotes tumorigenesis. PLoS One. 2012;7(3):e33844.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Papagiannakopoulos T, Friedmann-Morvinski D, Neveu P, Dugas JC, Gill RM, Huillard E, Liu C, Zong H, Rowitch DH, Barres BA, et al. Pro-neural miR-128 is a glioma tumor suppressor that targets mitogenic kinases. Oncogene. 2012;31(15):1884–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104.

    Rao SA, Santosh V, Somasundaram K. Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol. 2010;23(10):1404–17.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105.

    Rao SA, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA. Somasundaram K: miR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One. 2013;8(5):e63164.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  106. 106.

    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, S L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68(10):3566–72.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  107. 107.

    Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ. Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem. 2009;284(9):5731–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Tan X, Wang S, Yang B, Zhu L, Yin B, Chao T, Zhao J, Yuan J, Qiang B, Peng X. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PLoS One. 2012;7(11):e49570.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Wang L, Shi ZM, Jiang CF, Liu X, Chen QD, Qian X, Li DM, Ge X, Wang XF, Liu LZ, et al. MiR-143 acts as a tumor suppressor by targeting N-RAS and enhances temozolomide-induced apoptosis in glioma. Oncotarget. 2014;5(14):5416–27.

    PubMed  PubMed Central  Google Scholar 

  110. 110.

    Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, Adamo A, De Martino F, Quintavalle C, G R, et al. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget. 2016;7(15):19531–47.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Huang D, Qiu S, Ge R, He L, Li M, Li Y. Peng Y: miR-340 suppresses glioblastoma multiforme. Oncotarget. 2015;6(11):9257–70.

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Kim H, Huang W, Jiang X, Pennicooke B, Park PJ, Johnson MD. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship. Proc Natl Acad Sci U S A. 2010;107(5):2183–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Zhang Y, Kim J, Mueller AC, Dey B, Yang Y, Lee DH, Hachmann J, Finderle S, Park DM, Christensen J, et al. Multiple receptor tyrosine kinases converge on microRNA-134 to control KRAS, STAT5B, and glioblastoma. Cell Death Differ. 2014;21(5):720–34.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Liu Z, Jiang Z, Huang J, Huang S, Li Y, Yu S. Liu X: miR-7 inhibits glioblastoma growth by simultaneously interfering with the PI3K/ATK and Raf/MEK/ERK pathways. Int J Oncol. 2014;44(5):1571–80.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  115. 115.

    Cai J, Zhao J, Zhang N, Xu X, Li R, Yi Y, Fang L, Zhang L, Li M, Wu J, et al. MicroRNA-542-3p suppresses tumor cell invasion via targeting AKT pathway in human astrocytoma. J Biol Chem. 2015;290(41):24678–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Zhou X, Ren Y, Moore L, Mei M, You Y, Xu P, Wang B, Wang G, Jia Z, Pu P, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Investig. 2010;90(2):144–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117.

    Guo P, Nie Q, Lan J, Ge J, Qiu Y, Mao Q. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem Biophys Res Commun. 2013;441(1):186–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  118. 118.

    Xia X, Li Y, Wang W, Tang F, Tan J, Sun L, Li Q, Tang B, He S. MicroRNA-1908 functions as a glioblastoma oncogene by suppressing PTEN tumor suppressor pathway. Mol Cancer. 2015;14:154.

    PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Li XT, Wang HZ, Wu ZW, Yang TQ, Zhao ZH, Chen GL, Xie XS, Li B, Wei YX, Huang YL, et al. miR-494-3p regulates cellular proliferation, invasion, migration, and apoptosis by PTEN/AKT signaling in human Glioblastoma cells. Cell Mol Neurobiol. 2015;35(5):679–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Liu S, Sun J, Lan Q. TGF-beta-induced miR10a/b expression promotes human glioma cell migration by targeting PTEN. Mol Med Rep. 2013;8(6):1741–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121.

    Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Conti A, Aguennouz M, La Torre D, Tomasello C, Cardali S, Angileri FF, Maio F, Cama A, Germano A, G V, et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II-IV astrocytic tumors. J Neuro-Oncol. 2009;93(3):325–32.

    CAS  Article  Google Scholar 

  123. 123.

    Luo Z, Zang M, Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010;6(3):457–70.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M, Van Brocklyn J, Ostrowski MC, Chiocca EA, Lawler SE. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell. 2010;37(5):620–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Shen L, Sun C, Li Y, Li X, Sun T, Liu C, Zhou Y, Du Z. MicroRNA-199a-3p suppresses glioma cell proliferation by regulating the AKT/mTOR signaling pathway. Tumour Biol. 2015;36(9):6929–38.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem. 2005;280(49):40406–16.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127.

    Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, Iwanami A, Liu F, Villa GR, Gu Y, et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013;18(5):726–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. 128.

    Ling N, Gu J, Lei Z, Li M, Zhao J, Zhang HT. Li X: microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol Rep. 2013;30(5):2111–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Leivonen SK, Rokka A, Ostling P, Kohonen P, Corthals GL, Kallioniemi O, Perala M. Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol Cell Proteomics. 2011;10(7):M110 005322.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, et al. C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458(7239):762–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Mersey BD, Jin P, Danner DJ. Human microRNA (miR29b) expression controls the amount of branched chain alpha-ketoacid dehydrogenase complex in a cell. Hum Mol Genet. 2005;14(22):3371–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  132. 132.

    Bandiera S, Mategot R, Girard M, Demongeot J, Henrion-Caude A. MitomiRs delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med. 2013;64:12–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133.

    Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X. Pre-microRNA and mature microRNA in human mitochondria. PLoS One. 2011;6(5):e20220.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013;23(6):759–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell. 2014;158(3):607–19.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Bandiera S, Ruberg S, Girard M, Cagnard N, Hanein S, Chretien D, Munnich A, Lyonnet S, Henrion-Caude A. Nuclear outsourcing of RNA interference components to human mitochondria. PLoS One. 2011;6(6):e20746.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Yuan JD, Shi JX, Meng GX, An LG, Hu GX. Nuclear pseudogenes of mitochondrial DNA as a variable part of the human genome. Cell Res. 1999;9(4):281–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Tsuzuki T, Nomiyama H, Setoyama C, Maeda S, Shimada K. Presence of mitochondrial-DNA-like sequences in the human nuclear DNA. Gene. 1983;25(2–3):223–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Woischnik M, Moraes CT. Pattern of organization of human mitochondrial pseudogenes in the nuclear genome. Genome Res. 2002;12(6):885–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Das S, Ferlito M, Kent OA, Fox-Talbot K, Wang R, Liu D, Raghavachari N, Yang Y, Wheelan SJ, Murphy E, et al. Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110(12):1596–603.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A. Steenbergen C: miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One. 2014;9(5):e96820.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Wang L, Huang H, Fan Y, Kong B, Hu H, Hu K, Guo J, Mei Y, Liu WL. Effects of downregulation of microRNA-181a on H2O2-induced H9c2 cell apoptosis via the mitochondrial apoptotic pathway. Oxidative Med Cell Longev. 2014;2014:960362.

    Google Scholar 

  143. 143.

    Zhu HY, Liu MY, Hong Q, Zhang D, Geng WJ, Xie YS, Chen XM. Role of microRNA-181a in the apoptosis of tubular epithelial cell induced by cisplatin. Chin Med J. 2012;125(3):523–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144.

    Rippo MR, Olivieri F, Monsurro V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol. 2014;56:154–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  145. 145.

    Jagannathan R, Thapa D, Nichols CE, Shepherd DL, Stricker JC, Croston TL, Baseler WA, Lewis SE, Martinez I, Hollander JM. Translational regulation of the mitochondrial genome following redistribution of mitochondrial MicroRNA in the diabetic heart. Circ Cardiovasc Genet. 2015;8(6):785–802.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  146. 146.

    Wust S, Drose S, Heidler J, Wittig I, Klockner I, Franko A, Bonke E, Gunther S, Gartner U, Boettger T, et al. Metabolic maturation during muscle stem cell differentiation is achieved by miR-1/133a-mediated inhibition of the Dlk1-Dio3 mega gene cluster. Cell Metab. 2018;27(5):1026–39 e1026.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  147. 147.

    Aschrafi A, Kar AN, Natera-Naranjo O, MacGibeny MA, Gioio AE, Kaplan BB. MicroRNA-338 regulates the axonal expression of multiple nuclear-encoded mitochondrial mRNAs encoding subunits of the oxidative phosphorylation machinery. Cell Mol Life Sci. 2012;69(23):4017–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  148. 148.

    Chan SY, Zhang YY, Hemann C, Mahoney CE, Zweier JL, Loscalzo J. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009;10(4):273–84.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Chen Z, Li Y, Zhang H, Huang P, Luthra R. Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene. 2010;29(30):4362–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. 150.

    Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K, Maurin T, Lebrigand K, Cardinaud B. Hofman V et al: miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ. 2011;18(3):465–78.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  151. 151.

    Bai XY, Ma Y, Ding R, Fu B, Shi S. Chen XM: miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22(7):1252–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. 152.

    Fu Y, Zhang Y, Wang Z, Wang L, Wei X, Zhang B, Wen Z, Fang H, Pang Q, Yi F. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am J Nephrol. 2010;32(6):581–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. 153.

    Baradan R, Hollander JM, Das S. Mitochondrial miRNAs in diabetes: just the tip of the iceberg. Can J Physiol Pharmacol. 2017;95(10):1156–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Wang X. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 2006;34(5):1646–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Bienertova-Vasku J, Sana J, Slaby O. The role of microRNAs in mitochondria in cancer. Cancer Lett. 2013;336(1):1–7.

    CAS  PubMed  Article  Google Scholar 

  156. 156.

    Nishi H, Ono K, Iwanaga Y, Horie T, Nagao K, Takemura G, Kinoshita M, Kuwabara Y, Mori RT, Hasegawa K, et al. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J Biol Chem. 2010;285(7):4920–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Tomasetti M, Neuzil J, Dong L. MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim Biophys Acta. 2014;1840(4):1441–53.

    CAS  PubMed  Article  Google Scholar 

  158. 158.

    Li J, Donath S, Li Y, Qin D, Prabhakar BS. Li P: miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6(1):e1000795.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Karbiener M, Pisani DF, Frontini A, Oberreiter LM, Lang E, Vegiopoulos A, Mossenbock K, Bernhardt GA, Mayr T, Hildner F, et al. MicroRNA-26 family is required for human adipogenesis and drives characteristics of brown adipocytes. Stem Cells. 2014;32(6):1578–90.

    CAS  PubMed  Article  Google Scholar 

  160. 160.

    Kang T, Lu W, Xu W, Anderson L, Bacanamwo M, Thompson W, Chen YE, Liu D. MicroRNA-27 (miR-27) targets prohibitin and impairs adipocyte differentiation and mitochondrial function in human adipose-derived stem cells. J Biol Chem. 2013;288(48):34394–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. 161.

    Mohamed JS, Hajira A, Pardo PS, Boriek AM. MicroRNA-149 inhibits PARP-2 and promotes mitochondrial biogenesis via SIRT-1/PGC-1alpha network in skeletal muscle. Diabetes. 2014;63(5):1546–59.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  162. 162.

    Fang J, Song XW, Tian J, Chen HY, Li DF, Wang JF, Ren AJ, Yuan WJ, Lin L. Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes. Apoptosis. 2012;17(4):410–23.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Yu XY, Song YH, Geng YJ, Lin QX, Shan ZX, Lin SG, Li Y. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 2008;376(3):548–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references


Not applicable.


This work was supported by Key Program of National Natural Science Foundation of China 81530022, General Program of National Natural Science Foundation of China 81873618 and National Natural Science Foundation for Young Scholars of China 81600526.

Author information




YZ was a major contributor in writing the manuscript. JY contributed in writing and revising the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junwei Yang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Yang, J. Implications of microRNA in kidney metabolic disorders. ExRNA 2, 4 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Kidney
  • Metabolism
  • Mitochondria
  • miRNA
  • Fatty acid
  • Glycolysis